Quantifying Train-Evaluation Overlap with Nearest Neighbors

Gauri Kambhatla, Thuy Nguyen, Eunsol Choi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Characterizing benchmark datasets is crucial to interpreting model performance. In this work, we study train-evaluation overlap as a measure of an individual dataset's adequacy to evaluate model generalization over a wide range of datasets. We quantify the overlap with a simple novel metric based on a nearest neighbors approach between the training and evaluation sets. We identify nearest training examples for each evaluation example by mapping instances with generic and task-specific embedding methods. Our study on eleven classification and extractive QA tasks reveals a wide range of train-evaluation overlap, and we show that the data collection method of the dataset and the difficulty of the task may play a role in the amount of overlap. Lastly, we use our nearest neighbor analysis to identify challenging or potentially mislabeled examples. Our analysis quantifies train-evaluation overlap, providing insights for constructing datasets to study generalization.

Original languageEnglish (US)
Title of host publicationFindings of the Association for Computational Linguistics, ACL 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages2905-2920
Number of pages16
ISBN (Electronic)9781959429623
StatePublished - 2023
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: Jul 9 2023Jul 14 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period7/9/237/14/23

ASJC Scopus subject areas

  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Quantifying Train-Evaluation Overlap with Nearest Neighbors'. Together they form a unique fingerprint.

Cite this