TY - JOUR
T1 - Quantitative Stochastic Homogenization of Viscous Hamilton-Jacobi Equations
AU - Armstrong, Scott N.
AU - Cardaliaguet, Pierre
N1 - Publisher Copyright:
© 2015,& Francis Group, LLC.
PY - 2015/3/4
Y1 - 2015/3/4
N2 - We prove explicit estimates for the error in random homogenization of degenerate, second-order Hamilton-Jacobi equations, assuming the coefficients satisfy a finite range of dependence. In particular, we obtain an algebraic rate of convergence with overwhelming probability under certain structural conditions on the Hamiltonian.
AB - We prove explicit estimates for the error in random homogenization of degenerate, second-order Hamilton-Jacobi equations, assuming the coefficients satisfy a finite range of dependence. In particular, we obtain an algebraic rate of convergence with overwhelming probability under certain structural conditions on the Hamiltonian.
KW - Convergence rate
KW - Error estimate
KW - First-passage percolation
KW - Stochastic homogenization
KW - Viscous hamilton-jacobi equation
UR - http://www.scopus.com/inward/record.url?scp=84917705484&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84917705484&partnerID=8YFLogxK
U2 - 10.1080/03605302.2014.971372
DO - 10.1080/03605302.2014.971372
M3 - Article
AN - SCOPUS:84917705484
SN - 0360-5302
VL - 40
SP - 540
EP - 600
JO - Communications in Partial Differential Equations
JF - Communications in Partial Differential Equations
IS - 3
ER -