TY - GEN
T1 - Quantity doesn't buy quality syntax with neural language models
AU - van Schijndel, Marten
AU - Mueller, Aaron
AU - Linzen, Tal
N1 - Publisher Copyright:
© 2019 Association for Computational Linguistics
PY - 2019
Y1 - 2019
N2 - Recurrent neural networks can learn to predict upcoming words remarkably well on average; in syntactically complex contexts, however, they often assign unexpectedly high probabilities to ungrammatical words. We investigate to what extent these shortcomings can be mitigated by increasing the size of the network and the corpus on which it is trained. We find that gains from increasing network size are minimal beyond a certain point. Likewise, expanding the training corpus yields diminishing returns; we estimate that the training corpus would need to be unrealistically large for the models to match human performance. A comparison to GPT and BERT, Transformer-based models trained on billions of words, reveals that these models perform even more poorly than our LSTMs in some constructions. Our results make the case for more data efficient architectures.
AB - Recurrent neural networks can learn to predict upcoming words remarkably well on average; in syntactically complex contexts, however, they often assign unexpectedly high probabilities to ungrammatical words. We investigate to what extent these shortcomings can be mitigated by increasing the size of the network and the corpus on which it is trained. We find that gains from increasing network size are minimal beyond a certain point. Likewise, expanding the training corpus yields diminishing returns; we estimate that the training corpus would need to be unrealistically large for the models to match human performance. A comparison to GPT and BERT, Transformer-based models trained on billions of words, reveals that these models perform even more poorly than our LSTMs in some constructions. Our results make the case for more data efficient architectures.
UR - http://www.scopus.com/inward/record.url?scp=85084288747&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85084288747&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85084288747
T3 - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
SP - 5831
EP - 5837
BT - EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference
PB - Association for Computational Linguistics
T2 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019
Y2 - 3 November 2019 through 7 November 2019
ER -