Quantization effect on second moment of log-likelihood ratio and its application to decentralized sequential detection

Yan Wang, Yajun Mei

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

It is well known that quantization cannot increase the Kullback-Leibler divergence which can be thought of as the expected value or first moment of the log-likelihood ratio. In this paper, we investigate the quantization effects on the second moment of the log-likelihood ratio. It is shown that quantization may result in an increase in the case of the second moment, but the increase is bounded above by 2/e. The result is then applied to decentralized sequential detection problems to provide a simpler sufficient condition for asymptotic optimality theory, and the technique is also extended to investigate the quantization effects on other higher-order moments of the log-likelihood ratio and provide lower bounds on higher-order moments.

Original languageEnglish (US)
Title of host publication2012 IEEE International Symposium on Information Theory Proceedings, ISIT 2012
Pages314-318
Number of pages5
DOIs
StatePublished - 2012
Event2012 IEEE International Symposium on Information Theory, ISIT 2012 - Cambridge, MA, United States
Duration: Jul 1 2012Jul 6 2012

Publication series

NameIEEE International Symposium on Information Theory - Proceedings

Other

Other2012 IEEE International Symposium on Information Theory, ISIT 2012
Country/TerritoryUnited States
CityCambridge, MA
Period7/1/127/6/12

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Quantization effect on second moment of log-likelihood ratio and its application to decentralized sequential detection'. Together they form a unique fingerprint.

Cite this