Quantum field theory of particles with both electric and magnetic charges

Daniel Zwanziger

    Research output: Contribution to journalArticlepeer-review

    Abstract

    The quantum field theory of particles with both electric and magnetic charges is developed as an obvious extension of Schwinger's quantum field theory of particles with either electric or magnetic charge. Two new results immediately follow. The first is the chiral equivalence theorem which states the unitary equivalence of the Hamiltonians describing the system of particles with electric and magnetic charges en, gn and the system with charges en′=cosθ, en+sinθ gn, gn′=-sinθ en+cosθ gn. This result holds in particular in the absence of physical magnetic charges. The second result is that if physical magnetic charges do occur, then, in consequence of chiral equivalence, the charge quantization condition applies, not to the separate products emgn, but to the combinations emgn-gmen, which must be integral multiples of 4π. The general solution of this condition leads to the introduction of a second elementary quantum of electric charge e2, the electric charge on the Dirac monopole, besides the first elementary charge e1, the charge on the electron. There are no other free parameters.

    Original languageEnglish (US)
    Pages (from-to)1489-1495
    Number of pages7
    JournalPhysical Review
    Volume176
    Issue number5
    DOIs
    StatePublished - 1968

    ASJC Scopus subject areas

    • General Physics and Astronomy

    Fingerprint

    Dive into the research topics of 'Quantum field theory of particles with both electric and magnetic charges'. Together they form a unique fingerprint.

    Cite this