TY - JOUR
T1 - Régularité höldérienne des poches de tourbillon visqueuses
AU - Hmidi, Taoufik
PY - 2005/11
Y1 - 2005/11
N2 - We study the evolution of the Hölderian regularity for some convection-diffusion equation with respect to Lipschitzian vector field, generalizing a result of R. Danchin [J. Math. Pures Appl. 76 (1997) 609] for the Besov spaces Bp,∞ s, with p finite and s ∈ (-1, 1). As an application, we show for the two-dimensional Navier-Stokes system that if the initial vorticity is a vortex patch having a C1+ε boundary then its image through the viscous flow preserves this regularity for all time. We also show some results of inviscid limit.
AB - We study the evolution of the Hölderian regularity for some convection-diffusion equation with respect to Lipschitzian vector field, generalizing a result of R. Danchin [J. Math. Pures Appl. 76 (1997) 609] for the Besov spaces Bp,∞ s, with p finite and s ∈ (-1, 1). As an application, we show for the two-dimensional Navier-Stokes system that if the initial vorticity is a vortex patch having a C1+ε boundary then its image through the viscous flow preserves this regularity for all time. We also show some results of inviscid limit.
UR - http://www.scopus.com/inward/record.url?scp=27644571630&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27644571630&partnerID=8YFLogxK
U2 - 10.1016/j.matpur.2005.01.004
DO - 10.1016/j.matpur.2005.01.004
M3 - Article
AN - SCOPUS:27644571630
SN - 0021-7824
VL - 84
SP - 1455
EP - 1495
JO - Journal des Mathematiques Pures et Appliquees
JF - Journal des Mathematiques Pures et Appliquees
IS - 11
ER -