Random oracles and non-uniformity

Sandro Coretti, Yevgeniy Dodis, Siyao Guo, John Steinberger

Research output: Chapter in Book/Report/Conference proceedingConference contribution


We revisit security proofs for various cryptographic primitives in the auxiliary-input random-oracle model (AI-ROM), in which an attacker A can compute arbitrary S bits of leakage about the random oracle O before attacking the system and then use additional T oracle queries to O during the attack. This model has natural applications in settings where traditional random-oracle proofs are not useful: (a) security against non-uniform attackers; (b) security against preprocessing. We obtain a number of new results about the AI-ROM: Unruh (CRYPTO’07) introduced the pre-sampling technique, which generically reduces security proofs in the AI-ROM to a much simpler P-bit-fixing random-oracle model (BF-ROM), where the attacker can arbitrarily fix the values of O on some P coordinates, but then the remaining coordinates are chosen at random. Unruh’s security loss for this transformation is √ST/P. We improve this loss to the optimal value O(ST/P), obtaining nearly tight bounds for a variety of indistinguishability applications in the AI-ROM. While the basic pre-sampling technique cannot give tight bounds for unpredictability applications, we introduce a novel “multiplicative version” of pre-sampling, which allows to dramatically reduce the size of P of the pre-sampled set to P = O(ST) and yields nearly tight security bounds for a variety of unpredictability applications in the AI-ROM. Qualitatively, it validates Unruh’s “polynomial pre-sampling conjecture”-disproved in general by Dodis et al. (EUROCRYPT’17)-for the special case of unpredictability applications. Using our techniques, we reprove nearly all AI-ROM bounds obtained by Dodis et al. (using a much more laborious compression technique), but we also apply it to many settings where the compression technique is either inapplicable (e.g., computational reductions) or appears intractable (e.g., Merkle-Damgård hashing). We show that for any salted Merkle-Damgård hash function with m-bit output there exists a collision-finding circuit of size Θ(2m/3) (taking salt as the input), which is significantly below the 2m/2 birthday security conjectured against uniform attackers. We build two compilers to generically extend the security of applications proven in the traditional ROM to the AI-ROM. One compiler simply prepends a public salt to the random oracle, showing that salting generically provably defeats preprocessing.Overall, our results make it much easier to get concrete security bounds in the AI-ROM. These bounds in turn give concrete conjectures about the security of these applications (in the standard model) against nonuniform attackers.

Original languageEnglish (US)
Title of host publicationAdvances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2018 Proceedings
EditorsJesper Buus Nielsen, Vincent Rijmen
PublisherSpringer Verlag
Number of pages32
ISBN (Print)9783319783802
StatePublished - 2018
Event37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2018 - Tel Aviv, Israel
Duration: Apr 29 2018May 3 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10820 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Other37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2018
CityTel Aviv

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science


Dive into the research topics of 'Random oracles and non-uniformity'. Together they form a unique fingerprint.

Cite this