TY - GEN
T1 - Randomized parallel algorithms for trapezoidal diagrams
AU - Clarkson, Kenneth L.
AU - Cole, Richard
AU - Tarjan, Robert E.
N1 - Publisher Copyright:
© 1991 ACM.
PY - 1991/6/1
Y1 - 1991/6/1
N2 - We describe randomized parallel CREW PRAM algorithms for building trapezoidal diagrams of line segments in the plane. For general segments, we give an algorithm requiring optimal O(A + nlogn) expected work and optimal O(logn) time, where A is the number of intersecting pairs of segments. If the segments form a simple chain, we give an algorithm requiring optimal O(n) expected work and O(log n log log ra log∗ n) expected time, and a simpler algorithm requiring O(n log∗ n) expected work. The serial algorithm corresponding to the latter is the simplest known algorithm requiring O(n log∗ n) expected operations. For a set of segments forming K chains, we give an algorithm requiring O(A + n log∗ n + K log n) expected work and O(log n log log n log∗ n) expected time. The parallel time bounds require the assumption that enough processors are available, with processor allocations every log n steps.
AB - We describe randomized parallel CREW PRAM algorithms for building trapezoidal diagrams of line segments in the plane. For general segments, we give an algorithm requiring optimal O(A + nlogn) expected work and optimal O(logn) time, where A is the number of intersecting pairs of segments. If the segments form a simple chain, we give an algorithm requiring optimal O(n) expected work and O(log n log log ra log∗ n) expected time, and a simpler algorithm requiring O(n log∗ n) expected work. The serial algorithm corresponding to the latter is the simplest known algorithm requiring O(n log∗ n) expected operations. For a set of segments forming K chains, we give an algorithm requiring O(A + n log∗ n + K log n) expected work and O(log n log log n log∗ n) expected time. The parallel time bounds require the assumption that enough processors are available, with processor allocations every log n steps.
UR - http://www.scopus.com/inward/record.url?scp=77951880810&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77951880810&partnerID=8YFLogxK
U2 - 10.1145/109648.109665
DO - 10.1145/109648.109665
M3 - Conference contribution
AN - SCOPUS:77951880810
SN - 0897914260
T3 - Proceedings of the Annual Symposium on Computational Geometry
SP - 152
EP - 161
BT - Proceedings of the Annual Symposium on Computational Geometry
PB - Association for Computing Machinery
T2 - 7th Annual Symposium on Computational Geometry, SCG 1991
Y2 - 10 June 1991 through 12 June 1991
ER -