Rational design of temperature-sensitive alleles using computational structure prediction

Christopher S. Poultney, Glenn L. Butterfoss, Michelle R. Gutwein, Kevin Drew, David Gresham, Kristin C. Gunsalus, Dennis E. Shasha, Richard Bonneau

Research output: Contribution to journalArticlepeer-review

Abstract

Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and machine learning techniques to predict a highly accurate "top 5" list of ts mutations given the structure of a protein of interest. Rosetta is a protein structure prediction and design code, used here to model and score how proteins accommodate point mutations with side-chain and backbone movements. We show that integrating Rosetta relax-derived features with sequence-based features results in accurate temperature-sensitive mutation predictions.

Original languageEnglish (US)
Article numbere23947
JournalPloS one
Volume6
Issue number9
DOIs
StatePublished - Sep 2 2011

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Rational design of temperature-sensitive alleles using computational structure prediction'. Together they form a unique fingerprint.

Cite this