TY - JOUR
T1 - Reaction mechanisms of trans-1,2-dihydroxy-anti-3,4-epoxy-1,2,3,4-tetrahydro-5-methylchrysene with DNA in aqueous solutions
AU - Kim, Myung Hoon
AU - Geacintov, Nicholas E.
AU - Pope, Martin
AU - Pataki, John
AU - Harvey, Ronald G.
N1 - Funding Information:
This work was supported by the National Foundation for Cancer Research and in part by the Department of Energy (Contract E(l 1-11)2386) at the Radiation and Solid State Laboratory. We are grateful for equipment grants from the Camille and Henry Dreyfus Foundation, Inc., the National Science Foundation (Grant Number PCM-8108289) and the New York University Research Challenge Fund. The preparation of the diol epoxide compounds at the University of Chicago was supported by the American Cancer Society (Grant BC-132), and the National Cancer Institute (Grant CA 36097).
PY - 1985/1
Y1 - 1985/1
N2 - Reactions of trans-l,2-dihydroxy-anti-3,4-epoxy-l,2,3,4-tetrahydro-5-methylchrysene (anti-5-MeCDF) with DNA and the effects of ionic strength on the reaction were studied in aqueous buffer solution (5 mM sodium phosphate, pH 7) by means of absorption and fluorescence spectroscopy. The results are compared with those obtained with the widely studied metabolite model compound trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene(BaPDE5. The rate constant of hydrolysis of 5-MeCDE is k = 1.0 × 104s, which is ̃35 times smaller than the value of k for BaPDE under similar conditions. As in the case of BaPDE, the rate of reaction of 5-MeCDE is accelerated in the presence of DNA. This effect is attributed to the rapid formation of physical association complexes (binding constant K) and the subsequent slower formation (rate constant k3) of carbocations at DNA binding sites, which in turn decay rapidly via hydrolysis to tetraols (l,2,3,4-tetrahydroxytetrahydro-5-methylchrysene, 5-MeCT) and to covalent adducts. The values of K and k3 are 2800 ± 300/M and 8.7 × 10-3/s respectively, and are reduced to 450 ± 100/M and 1.8 × 10-3/s in the presence of 0.1 M NaCl. The fraction of 5-MeCDE molecules which bind covalently to DNA is, on the other hand, constant under these conditions and lies in the range of 5-8%. Similar values for the covalent binding are observed for BaPDE, even though the physical association constant K is ̃10 times larger than for 5-MeCDE under similar conditions. This difference in the values of K are attributed to the larger aromatic ring system in BaPDE which allows for a higher interaction of this molecule with the bases of DNA. Finally, the tetraol derived from the hydrolysis of 5-MeCDE also binds non-covalently to DNA, but the value of K is ̃3 times smaller than for the diol epoxide.
AB - Reactions of trans-l,2-dihydroxy-anti-3,4-epoxy-l,2,3,4-tetrahydro-5-methylchrysene (anti-5-MeCDF) with DNA and the effects of ionic strength on the reaction were studied in aqueous buffer solution (5 mM sodium phosphate, pH 7) by means of absorption and fluorescence spectroscopy. The results are compared with those obtained with the widely studied metabolite model compound trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene(BaPDE5. The rate constant of hydrolysis of 5-MeCDE is k = 1.0 × 104s, which is ̃35 times smaller than the value of k for BaPDE under similar conditions. As in the case of BaPDE, the rate of reaction of 5-MeCDE is accelerated in the presence of DNA. This effect is attributed to the rapid formation of physical association complexes (binding constant K) and the subsequent slower formation (rate constant k3) of carbocations at DNA binding sites, which in turn decay rapidly via hydrolysis to tetraols (l,2,3,4-tetrahydroxytetrahydro-5-methylchrysene, 5-MeCT) and to covalent adducts. The values of K and k3 are 2800 ± 300/M and 8.7 × 10-3/s respectively, and are reduced to 450 ± 100/M and 1.8 × 10-3/s in the presence of 0.1 M NaCl. The fraction of 5-MeCDE molecules which bind covalently to DNA is, on the other hand, constant under these conditions and lies in the range of 5-8%. Similar values for the covalent binding are observed for BaPDE, even though the physical association constant K is ̃10 times larger than for 5-MeCDE under similar conditions. This difference in the values of K are attributed to the larger aromatic ring system in BaPDE which allows for a higher interaction of this molecule with the bases of DNA. Finally, the tetraol derived from the hydrolysis of 5-MeCDE also binds non-covalently to DNA, but the value of K is ̃3 times smaller than for the diol epoxide.
UR - http://www.scopus.com/inward/record.url?scp=0021991363&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021991363&partnerID=8YFLogxK
U2 - 10.1093/carcin/6.1.121
DO - 10.1093/carcin/6.1.121
M3 - Article
C2 - 3967331
AN - SCOPUS:0021991363
SN - 0143-3334
VL - 6
SP - 121
EP - 126
JO - Carcinogenesis
JF - Carcinogenesis
IS - 1
ER -