TY - JOUR
T1 - Real time in situ monitoring of surfaces during glow discharge processing
T2 - NH3 and H2 plasma passivation of GaAs
AU - Aydil, Eray S.
AU - Zhou, Zhen H.
AU - Gottscho, Richard A.
AU - Chabal, Yves J.
PY - 1995/3
Y1 - 1995/3
N2 - Numerous device applications of GaAs are hampered by poor electronic properties of GaAs surfaces and interfaces. Room temperature NH3 and H2 downstream plasma passivation of native oxide contaminated GaAs surfaces is investigated using attenuated-total-reflection (ATR) Fourier-transform-infrared spectroscopy (FTIR) and photoluminescence (PL). Using ATR FTIR concentrations of -As-O, -As-H, H-OH, and C-H bonds are monitored in situ and in real time during exposure of the GaAs surface to H (D) atoms from a microwave discharge through NH3 (ND3) and H2 (D2). Photoluminescence intensity from the GaAs is monitored simultaneously with the FTIR spectra and used as a measure of surface state reduction. At room temperature, H atoms produced from the discharge remove -As-O and C-H contaminants but not Ga2O3. The appearance of As-H bonds and corresponding increase in PL are delayed significantly from plasma initiation, an increase in -O-H concentration, and removal of -As-O bonds. Because the As antisite defects are concentrated at the GaAs-oxide interface, the rates of As-H formation and PL enhancement may be limited by diffusion of H through the oxide and water layer which forms on the surface. We find that the concentration of physisorbed H2O on the GaAs surface increases throughout passivation. There are two sources of water detected on the surface: (i) reduction of As-O bonds and (ii) reaction of H with the quartz reactor walls. Ga2O3 grows on the surface via oxidation of GaAs by the physisorbed water. We surmise that higher H concentration in NH3 plasmas results in faster water accumulation on the surface and trapping of the As-H species subsurface. In H2 plasma, water accumulation on the surface is slower and trapping of As-H is not observed.
AB - Numerous device applications of GaAs are hampered by poor electronic properties of GaAs surfaces and interfaces. Room temperature NH3 and H2 downstream plasma passivation of native oxide contaminated GaAs surfaces is investigated using attenuated-total-reflection (ATR) Fourier-transform-infrared spectroscopy (FTIR) and photoluminescence (PL). Using ATR FTIR concentrations of -As-O, -As-H, H-OH, and C-H bonds are monitored in situ and in real time during exposure of the GaAs surface to H (D) atoms from a microwave discharge through NH3 (ND3) and H2 (D2). Photoluminescence intensity from the GaAs is monitored simultaneously with the FTIR spectra and used as a measure of surface state reduction. At room temperature, H atoms produced from the discharge remove -As-O and C-H contaminants but not Ga2O3. The appearance of As-H bonds and corresponding increase in PL are delayed significantly from plasma initiation, an increase in -O-H concentration, and removal of -As-O bonds. Because the As antisite defects are concentrated at the GaAs-oxide interface, the rates of As-H formation and PL enhancement may be limited by diffusion of H through the oxide and water layer which forms on the surface. We find that the concentration of physisorbed H2O on the GaAs surface increases throughout passivation. There are two sources of water detected on the surface: (i) reduction of As-O bonds and (ii) reaction of H with the quartz reactor walls. Ga2O3 grows on the surface via oxidation of GaAs by the physisorbed water. We surmise that higher H concentration in NH3 plasmas results in faster water accumulation on the surface and trapping of the As-H species subsurface. In H2 plasma, water accumulation on the surface is slower and trapping of As-H is not observed.
UR - http://www.scopus.com/inward/record.url?scp=0029273205&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029273205&partnerID=8YFLogxK
U2 - 10.1116/1.588361
DO - 10.1116/1.588361
M3 - Article
AN - SCOPUS:0029273205
SN - 0734-211X
VL - 13
SP - 258
EP - 267
JO - Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
JF - Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures
IS - 2
ER -