Real-time monitoring system and advanced characterization technique for civil infrastructure health monitoring

V. Bennett, T. Abdoun, M. Zeghal, A. Koelewijn, M. Barendse, R. Dobry

Research output: Contribution to journalArticlepeer-review

Abstract

Real-time monitoring of civil infrastructure provides valuable information to assess the health and condition of the associated systems. This paper presents the recently developed shape acceleration array (SAA) and local system identification (SI) technique, which constitute a major step toward long-term effective health monitoring and analysis of soil and soil-structure systems. The SAA is based on triaxial micro-electro-mechanical system (MEMS) sensors to measure in situ deformation (angles relative to gravity) and dynamic accelerations up to a depth of one hundred meters. This paper provides an assessment of this array's performance for geotechnical instrumentation applications by reviewing the recorded field data from a bridge replacement site and a full-scale levee test facility. The SI technique capitalizes on the abundance of static and dynamic measurements from the SAA. The geotechnical properties and constitutive response of soil contained within a locally instrumented zone are analyzed and identified independently of adjacent soil strata.

Original languageEnglish (US)
Article number870383
JournalAdvances in Civil Engineering
Volume2011
DOIs
StatePublished - 2011

ASJC Scopus subject areas

  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'Real-time monitoring system and advanced characterization technique for civil infrastructure health monitoring'. Together they form a unique fingerprint.

Cite this