TY - JOUR
T1 - Recurrent neural network dynamical systems for biological vision
AU - Soo, Wayne W.M.
AU - Battista, Aldo
AU - Radmard, Puria
AU - Wang, Xiao Jing
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - In neuroscience, recurrent neural networks (RNNs) are modeled as continuous-time dynamical systems to more accurately reflect the dynamics inherent in biological circuits. However, convolutional neural networks (CNNs) remain the preferred architecture in vision neuroscience due to their ability to efficiently process visual information, which comes at the cost of the biological realism provided by RNNs. To address this, we introduce a hybrid architecture that integrates the continuous-time recurrent dynamics of RNNs with the spatial processing capabilities of CNNs. Our models preserve the dynamical characteristics typical of RNNs while having comparable performance with their conventional CNN counterparts on benchmarks like ImageNet. Compared to conventional CNNs, our models demonstrate increased robustness to noise due to noise-suppressing mechanisms inherent in recurrent dynamical systems. Analyzing our architecture as a dynamical system is computationally expensive, so we develop a toolkit consisting of iterative methods specifically tailored for convolutional structures. We also train multi-area RNNs using our architecture as the front-end to perform complex cognitive tasks previously impossible to learn or achievable only with oversimplified stimulus representations. In monkey neural recordings, our models capture time-dependent variations in neural activity in higher-order visual areas. Together, these contributions represent a comprehensive foundation to unify the advances of CNNs and dynamical RNNs in vision neuroscience.
AB - In neuroscience, recurrent neural networks (RNNs) are modeled as continuous-time dynamical systems to more accurately reflect the dynamics inherent in biological circuits. However, convolutional neural networks (CNNs) remain the preferred architecture in vision neuroscience due to their ability to efficiently process visual information, which comes at the cost of the biological realism provided by RNNs. To address this, we introduce a hybrid architecture that integrates the continuous-time recurrent dynamics of RNNs with the spatial processing capabilities of CNNs. Our models preserve the dynamical characteristics typical of RNNs while having comparable performance with their conventional CNN counterparts on benchmarks like ImageNet. Compared to conventional CNNs, our models demonstrate increased robustness to noise due to noise-suppressing mechanisms inherent in recurrent dynamical systems. Analyzing our architecture as a dynamical system is computationally expensive, so we develop a toolkit consisting of iterative methods specifically tailored for convolutional structures. We also train multi-area RNNs using our architecture as the front-end to perform complex cognitive tasks previously impossible to learn or achievable only with oversimplified stimulus representations. In monkey neural recordings, our models capture time-dependent variations in neural activity in higher-order visual areas. Together, these contributions represent a comprehensive foundation to unify the advances of CNNs and dynamical RNNs in vision neuroscience.
UR - http://www.scopus.com/inward/record.url?scp=105000555225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105000555225&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000555225
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -