Abstract
Sulfonated surface patches of poly(styrene)-based colloidal particles (CPs) were functionalized with cucurbit[7]uril (CB[7]). The macrocycles served as recognition units for diphenyl viologen (DPV2+), a rigid bridging ligand. The addition of DPV2+ to aqueous suspensions of the particles triggered the self-assembly of short linear and branched chainlike structures. The self-assembly mechanism is based on hydrophobic/ion-charge interactions that are established between DPV2+ and surface-adsorbed CB[7]. DPV2+ guides the self-assembly of the CPs by forming a ternary DPV2+(CB[7])2 complex in which the two CB[7] macrocycles are attached to two different particles. Viologen-driven particle assembly was found to be both directional and reversible. Whereas sodium chloride triggers irreversible particle disassembly, the one-electron reduction of DPV2+ with sodium dithionite causes disassembly that can be reversed via air oxidation. Thus, this bottom-up synthetic supramolecular approach allowed for the reversible formation and directional alignment of a 2D colloidal material.
Original language | English (US) |
---|---|
Pages (from-to) | 7144-7150 |
Number of pages | 7 |
Journal | Langmuir |
Volume | 32 |
Issue number | 28 |
DOIs | |
State | Published - Jul 19 2016 |
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics
- Surfaces and Interfaces
- Spectroscopy
- Electrochemistry