TY - GEN
T1 - Reducing statistical dependencies in natural signals using radial Gaussianization
AU - Lyu, Siwei
AU - Simoncelli, Eero P.
PY - 2009
Y1 - 2009
N2 - We consider the problem of transforming a signal to a representation in which the components are statistically independent. When the signal is generated as a linear transformation of independent Gaussian or non-Gaussian sources, the solution may be computed using a linear transformation (PCA or ICA, respectively). Here, we consider a complementary case, in which the source is non-Gaussian but elliptically symmetric. Such a source cannot be decomposed into independent components using a linear transform, but we show that a simple nonlinear transformation, which we call radial Gaussianization (RG), is able to remove all dependencies. We apply this methodology to natural signals, demonstrating that the joint distributions of nearby bandpass filter responses, for both sounds and images, are closer to being elliptically symmetric than linearly transformed factorial sources. Consistent with this, we demonstrate that the reduction in dependency achieved by applying RG to either pairs or blocks of bandpass filter responses is significantly greater than that achieved by PCA or ICA.
AB - We consider the problem of transforming a signal to a representation in which the components are statistically independent. When the signal is generated as a linear transformation of independent Gaussian or non-Gaussian sources, the solution may be computed using a linear transformation (PCA or ICA, respectively). Here, we consider a complementary case, in which the source is non-Gaussian but elliptically symmetric. Such a source cannot be decomposed into independent components using a linear transform, but we show that a simple nonlinear transformation, which we call radial Gaussianization (RG), is able to remove all dependencies. We apply this methodology to natural signals, demonstrating that the joint distributions of nearby bandpass filter responses, for both sounds and images, are closer to being elliptically symmetric than linearly transformed factorial sources. Consistent with this, we demonstrate that the reduction in dependency achieved by applying RG to either pairs or blocks of bandpass filter responses is significantly greater than that achieved by PCA or ICA.
UR - http://www.scopus.com/inward/record.url?scp=84858781961&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858781961&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84858781961
SN - 9781605609492
T3 - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
SP - 1009
EP - 1016
BT - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PB - Neural Information Processing Systems
T2 - 22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Y2 - 8 December 2008 through 11 December 2008
ER -