TY - JOUR
T1 - Reevaluating Assembly Evaluations with Feature Response Curves
T2 - GAGE and Assemblathons
AU - Vezzi, Francesco
AU - Narzisi, Giuseppe
AU - Mishra, Bud
N1 - Funding Information:
We would like to thank all the Spruce Assembly Project, in particular Prof. Lars Arvestad, Björn Nystedt and Nathaniel Street for their constant feedback and advice. We also wish to thank Vadim Sapiro of OpGen, LLC., Mike Schatz of Cold Spring Harbor Lab, Mihai Pop of of Johns Hopkins University and Adam Phillipy of National Biodefense Analysis and Countermeasures Center for many useful comments on an initial draft of the paper. Moreover, FV would like to thank Knut and Alice Wallenberg Foundation for their support. The research reported in this paper was partially supported by NSF CDI and Expedition in Computing grants.
PY - 2012/12/28
Y1 - 2012/12/28
N2 - In just the last decade, a multitude of bio-technologies and software pipelines have emerged to revolutionize genomics. To further their central goal, they aim to accelerate and improve the quality of de novo whole-genome assembly starting from short DNA sequences/reads. However, the performance of each of these tools is contingent on the length and quality of the sequencing data, the structure and complexity of the genome sequence, and the resolution and quality of long-range information. Furthermore, in the absence of any metric that captures the most fundamental "features" of a high-quality assembly, there is no obvious recipe for users to select the most desirable assembler/assembly. This situation has prompted the scientific community to rely on crowd-sourcing through international competitions, such as Assemblathons or GAGE, with the intention of identifying the best assembler(s) and their features. Somewhat circuitously, the only available approach to gauge de novo assemblies and assemblers relies solely on the availability of a high-quality fully assembled reference genome sequence. Still worse, reference-guided evaluations are often both difficult to analyze, leading to conclusions that are difficult to interpret. In this paper, we circumvent many of these issues by relying upon a tool, dubbed FRCbam, which is capable of evaluating de novo assemblies from the read-layouts even when no reference exists. We extend the FRCurve approach to cases where lay-out information may have been obscured, as is true in many deBruijn-graph-based algorithms. As a by-product, FRCurve now expands its applicability to a much wider class of assemblers - thus, identifying higher-quality members of this group, their inter-relations as well as sensitivity to carefully selected features, with or without the support of a reference sequence or layout for the reads. The paper concludes by reevaluating several recently conducted assembly competitions and the datasets that have resulted from them.
AB - In just the last decade, a multitude of bio-technologies and software pipelines have emerged to revolutionize genomics. To further their central goal, they aim to accelerate and improve the quality of de novo whole-genome assembly starting from short DNA sequences/reads. However, the performance of each of these tools is contingent on the length and quality of the sequencing data, the structure and complexity of the genome sequence, and the resolution and quality of long-range information. Furthermore, in the absence of any metric that captures the most fundamental "features" of a high-quality assembly, there is no obvious recipe for users to select the most desirable assembler/assembly. This situation has prompted the scientific community to rely on crowd-sourcing through international competitions, such as Assemblathons or GAGE, with the intention of identifying the best assembler(s) and their features. Somewhat circuitously, the only available approach to gauge de novo assemblies and assemblers relies solely on the availability of a high-quality fully assembled reference genome sequence. Still worse, reference-guided evaluations are often both difficult to analyze, leading to conclusions that are difficult to interpret. In this paper, we circumvent many of these issues by relying upon a tool, dubbed FRCbam, which is capable of evaluating de novo assemblies from the read-layouts even when no reference exists. We extend the FRCurve approach to cases where lay-out information may have been obscured, as is true in many deBruijn-graph-based algorithms. As a by-product, FRCurve now expands its applicability to a much wider class of assemblers - thus, identifying higher-quality members of this group, their inter-relations as well as sensitivity to carefully selected features, with or without the support of a reference sequence or layout for the reads. The paper concludes by reevaluating several recently conducted assembly competitions and the datasets that have resulted from them.
UR - http://www.scopus.com/inward/record.url?scp=84871686918&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84871686918&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0052210
DO - 10.1371/journal.pone.0052210
M3 - Article
C2 - 23284938
AN - SCOPUS:84871686918
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 12
M1 - e52210
ER -