Regularity of optimal transport maps and applications

Guido de Philippis

Research output: Book/ReportBook

Abstract

In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Chapter 5 we show how the above mentioned results allows to prove the existence of Eulerian solution to the semi-geostrophic equation. In Chapter 6 we prove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.

Original languageEnglish (US)
PublisherScuola Normale Superiore
Number of pages169
ISBN (Electronic)9788876424588
ISBN (Print)9788876424564
DOIs
StatePublished - Jan 1 2013

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Regularity of optimal transport maps and applications'. Together they form a unique fingerprint.

Cite this