Regularized estimation of image statistics by Score Matching

Diederik P. Kingma, Yann LeCun

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Score Matching is a recently-proposed criterion for training high-dimensional density models for which maximum likelihood training is intractable. It has been applied to learning natural image statistics but has so-far been limited to simple models due to the difficulty of differentiating the loss with respect to the model parameters. We show how this differentiation can be automated with an extended version of the double-backpropagation algorithm. In addition, we introduce a regularization term for the Score Matching loss that enables its use for a broader range of problem by suppressing instabilities that occur with finite training sample sizes and quantized input values. Results are reported for image denoising and super-resolution.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 23
Subtitle of host publication24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
StatePublished - 2010
Event24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010 - Vancouver, BC, Canada
Duration: Dec 6 2010Dec 9 2010

Publication series

NameAdvances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010

Other

Other24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
CountryCanada
CityVancouver, BC
Period12/6/1012/9/10

ASJC Scopus subject areas

  • Information Systems

Fingerprint Dive into the research topics of 'Regularized estimation of image statistics by Score Matching'. Together they form a unique fingerprint.

Cite this