Regularizing with Pseudo-Negatives for Continual Self-Supervised Learning

Sungmin Cha, Kyunghyun Cho, Taesup Moon

Research output: Contribution to journalConference articlepeer-review

Abstract

We introduce a novel Pseudo-Negative Regularization (PNR) framework for effective continual self-supervised learning (CSSL). Our PNR leverages pseudo-negatives obtained through model-based augmentation in a way that newly learned representations may not contradict what has been learned in the past. Specifically, for the InfoNCE-based contrastive learning methods, we define symmetric pseudo-negatives obtained from current and previous models and use them in both main and regularization loss terms. Furthermore, we extend this idea to non-contrastive learning methods which do not inherently rely on negatives. For these methods, a pseudo-negative is defined as the output from the previous model for a differently augmented version of the anchor sample and is asymmetrically applied to the regularization term. Extensive experimental results demonstrate that our PNR framework achieves state-of-the-art performance in representation learning during CSSL by effectively balancing the trade-off between plasticity and stability.

Original languageEnglish (US)
Pages (from-to)6048-6065
Number of pages18
JournalProceedings of Machine Learning Research
Volume235
StatePublished - 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: Jul 21 2024Jul 27 2024

ASJC Scopus subject areas

  • Artificial Intelligence
  • Software
  • Control and Systems Engineering
  • Statistics and Probability

Fingerprint

Dive into the research topics of 'Regularizing with Pseudo-Negatives for Continual Self-Supervised Learning'. Together they form a unique fingerprint.

Cite this