TY - JOUR
T1 - Regulation and cytoprotective role of hexokinase III
AU - Wyatt, Eugene
AU - Wu, Rongxue
AU - Rabeh, Wael
AU - Park, Hee Won
AU - Ghanefar, Mohsen
AU - Ardehali, Hossein
PY - 2010
Y1 - 2010
N2 - Background: Hexokinases (HKs) catalyze the first step in glucose metabolism. Of the three mammalian 100-kDa HK isoforms, HKI and II can bind to mitochondria and protect against cell death. HKIII does not bind mitochondria, and little is known about its regulation or cytoprotective effects. We studied the regulation of HKIII at the transcriptional and protein levels and investigated its role in cellular protection. Methodology/Principal Findings: We show that like HKII, HKIII expression is regulated by hypoxia, but other factors that regulate HKII expression have no effect on HKIII levels. This transcriptional regulation is partially dependent on hypoxiainducible factor (HIF) signaling. We also demonstrate regulation at the protein level, as mutations in putative N-terminal substrate binding residues altered C-terminal catalytic activity, suggesting that HKIII activity is governed, in part, by interactions between these two domains. Overexpression of HKIII reduced oxidant-induced cell death, increased ATP levels, decreased the production of reactive oxygen species (ROS), and preserved mitochondrial membrane potential. HKIII overexpression was also associated with higher levels of transcription factors that regulate mitochondrial biogenesis, and greater total mitochondrial DNA content. Attempts to target HKIII to the mitochondria by replacing its N-terminal 32-aminoacid sequence with the mitochondrial-targeting sequence of HKII led to protein aggregation, suggesting that this region is necessary to maintain proper protein folding and solubility. Conclusions/Significance: These results suggest that HKIII is regulated by hypoxia and there are functional interactions between its two halves. Furthermore, HKIII exerts protective effects against oxidative stress, perhaps by increasing ATP levels, reducing oxidant-induced ROS production, preserving mitochondrial membrane potential, and increasing mitochondrial biogenesis.
AB - Background: Hexokinases (HKs) catalyze the first step in glucose metabolism. Of the three mammalian 100-kDa HK isoforms, HKI and II can bind to mitochondria and protect against cell death. HKIII does not bind mitochondria, and little is known about its regulation or cytoprotective effects. We studied the regulation of HKIII at the transcriptional and protein levels and investigated its role in cellular protection. Methodology/Principal Findings: We show that like HKII, HKIII expression is regulated by hypoxia, but other factors that regulate HKII expression have no effect on HKIII levels. This transcriptional regulation is partially dependent on hypoxiainducible factor (HIF) signaling. We also demonstrate regulation at the protein level, as mutations in putative N-terminal substrate binding residues altered C-terminal catalytic activity, suggesting that HKIII activity is governed, in part, by interactions between these two domains. Overexpression of HKIII reduced oxidant-induced cell death, increased ATP levels, decreased the production of reactive oxygen species (ROS), and preserved mitochondrial membrane potential. HKIII overexpression was also associated with higher levels of transcription factors that regulate mitochondrial biogenesis, and greater total mitochondrial DNA content. Attempts to target HKIII to the mitochondria by replacing its N-terminal 32-aminoacid sequence with the mitochondrial-targeting sequence of HKII led to protein aggregation, suggesting that this region is necessary to maintain proper protein folding and solubility. Conclusions/Significance: These results suggest that HKIII is regulated by hypoxia and there are functional interactions between its two halves. Furthermore, HKIII exerts protective effects against oxidative stress, perhaps by increasing ATP levels, reducing oxidant-induced ROS production, preserving mitochondrial membrane potential, and increasing mitochondrial biogenesis.
UR - http://www.scopus.com/inward/record.url?scp=78249282307&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78249282307&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0013823
DO - 10.1371/journal.pone.0013823
M3 - Article
C2 - 21072205
AN - SCOPUS:78249282307
SN - 1932-6203
VL - 5
JO - PloS one
JF - PloS one
IS - 11
M1 - e13823
ER -