Regulation of chromatin architecture by transcription factor binding

Stephanie Portillo-Ledesma, Suckwoo Chung, Jill Hoffman, Tamar Schlick

Research output: Contribution to journalArticlepeer-review


Transcription factors (TF) bind to chromatin and regulate the expression of genes. The pair Myc:Max binds to E-box regulatory DNA elements throughout the genome to control the transcription of a large group of specific genes. We introduce an implicit modeling protocol for Myc:Max binding to mesoscale chromatin fibers at nucleosome resolution to determine TF effect on chromatin architecture and shed light into its mechanism of gene regulation. We first bind Myc:Max to different chromatin locations and show how it can direct fiber folding and formation of microdomains, and how this depends on the linker DNA length. Second, by simulating increasing concentrations of Myc:Max binding to fibers that differ in the DNA linker length, linker histone density, and acetylation levels, we assess the interplay between Myc:Max and other chromatin internal parameters. Third, we study the mechanism of gene silencing by Myc:Max binding to the Eed gene loci. Overall, our results show how chromatin architecture can be regulated by TF binding. The position of TF binding dictates the formation of microdomains that appear visible only at the ensemble level. At the same time, the level of linker histone and tail acetylation, or different linker DNA lengths, regulates the concentration-dependent effect of TF binding. Furthermore, we show how TF binding can repress gene expression by increasing fiber folding motifs that help compact and occlude the promoter region. Importantly, this effect can be reversed by increasing linker histone density. Overall, these results shed light on the epigenetic control of the genome dictated by TF binding.

Original languageEnglish (US)
Article numberRP91320
StatePublished - 2024

ASJC Scopus subject areas

  • General Immunology and Microbiology
  • General Biochemistry, Genetics and Molecular Biology
  • General Neuroscience


Dive into the research topics of 'Regulation of chromatin architecture by transcription factor binding'. Together they form a unique fingerprint.

Cite this