Reinforcement-Learning-Based Risk-Sensitive Optimal Feedback Mechanisms of Biological Motor Control

Leilei Cui, Bo Pang, Zhong Ping Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Risk sensitivity is a fundamental aspect of biological motor control that accounts for both the expectation and variability of movement cost in the face of uncertainty. However, most computational models of biological motor control rely on model-based risk-sensitive optimal control, which requires an accurate internal representation in the central neural system to predict the outcomes of motor commands. In reality, the dynamics of human-environment interaction is too complex to be accurately modeled, and noise further complicates system identification. To address this issue, this paper proposes a novel risk-sensitive computational mechanism for biological motor control based on reinforcement learning (RL) and adaptive dynamic programming (ADP). The proposed ADP-based mechanism suggests that humans can directly learn an approximation of the risk-sensitive optimal feedback controller from noisy sensory data without the need for system identification. Numerical validation of the proposed mechanism is conducted on the arm-reaching task under divergent force field. The preliminary computational results align with the experimental observations from the past literature of computational neuroscience.

Original languageEnglish (US)
Title of host publication2023 62nd IEEE Conference on Decision and Control, CDC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7944-7949
Number of pages6
ISBN (Electronic)9798350301243
DOIs
StatePublished - 2023
Event62nd IEEE Conference on Decision and Control, CDC 2023 - Singapore, Singapore
Duration: Dec 13 2023Dec 15 2023

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference62nd IEEE Conference on Decision and Control, CDC 2023
Country/TerritorySingapore
CitySingapore
Period12/13/2312/15/23

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Reinforcement-Learning-Based Risk-Sensitive Optimal Feedback Mechanisms of Biological Motor Control'. Together they form a unique fingerprint.

Cite this