Reinforcement Learning-based Traffic Engineering for QoS Provisioning and Load Balancing

Minghao Ye, Yang Hu, Junjie Zhang, Zehua Guo, H. Jonathan Chao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Emerging applications pose different Quality of Service (QoS) requirements for the network, where Traffic Engineering (TE) plays an important role in QoS provisioning by carefully selecting routing paths and adjusting traffic split ratios on routing paths. To accommodate diverse QoS requirements of traffic flows under network dynamics, TE usually periodically computes an optimal routing strategy and updates a significant number of forwarding entries, which introduces considerable network operation management overhead. In this paper, we propose QoS-RL, a Reinforcement Learning (RL)-based TE solution for QoS provisioning and load balancing with low management overhead and service disruption during routing updates. Given the traffic matrices that represent the traffic demands of high and low priority flows, QoS-RL can intelligently select and update only a few destination-based forwarding entries to satisfy the QoS requirements of high priority traffic while maintaining good load balancing performance by rerouting a small portion of low priority traffic. Extensive simulation results on four real-world network topologies demonstrate that QoS-RL provides at least 95.5 % of optimal end-to-end delay performance on average for high priority flows, and also achieves above 90 % of optimal load balancing performance in most cases by updating only 10% of destination-based forwarding entries.

Original languageEnglish (US)
Title of host publication2023 IEEE/ACM 31st International Symposium on Quality of Service, IWQoS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350399738
DOIs
StatePublished - 2023
Event31st IEEE/ACM International Symposium on Quality of Service, IWQoS 2023 - Orlando, United States
Duration: Jun 19 2023Jun 21 2023

Publication series

NameIEEE International Workshop on Quality of Service, IWQoS
Volume2023-June
ISSN (Print)1548-615X

Conference

Conference31st IEEE/ACM International Symposium on Quality of Service, IWQoS 2023
Country/TerritoryUnited States
CityOrlando
Period6/19/236/21/23

Keywords

  • Load Balancing
  • Management Overhead
  • Quality of Service
  • Reinforcement Learning
  • Traffic Engineering

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Reinforcement Learning-based Traffic Engineering for QoS Provisioning and Load Balancing'. Together they form a unique fingerprint.

Cite this