Residual Pathway Priors for Soft Equivariance Constraints

Marc Finzi, Greg Benton, Andrew Gordon Wilson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Models such as convolutional neural networks restrict the hypothesis space to a set of functions satisfying equivariance constraints, and improve generalization in problems by capturing relevant symmetries. However, symmetries are often only partially respected, preventing models with restriction biases from fitting the data. We introduce Residual Pathway Priors (RPPs) as a method for converting hard architectural constraints into soft priors, guiding models towards structured solutions while retaining the ability to capture additional complexity. RPPs are resilient to approximate or misspecified symmetries, and are as effective as fully constrained models even when symmetries are exact. We show that RPPs provide compelling performance on both model-free and model-based reinforcement learning problems, where contact forces and directional rewards violate the assumptions of equivariant networks. Finally, we demonstrate that RPPs have broad applicability, including dynamical systems, regression, and classification.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages30037-30049
Number of pages13
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: Dec 6 2021Dec 14 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period12/6/2112/14/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Residual Pathway Priors for Soft Equivariance Constraints'. Together they form a unique fingerprint.

Cite this