Abstract
Raman intensity measurements for the Fe-O2 stretching band of HbO2 (Hb = hemoglobin) have been used to construct an excitation profile, which shows that resonance enhancement occurs mainly via the B and Q transition; no contribution is detectable from an out-of-plane charge-transfer transition. Direct coupling of [formula omitted] to the porphyrin π−π* transitions is explained on the basis of competition between the π* orbitals of porphyrin and O2 for Fe dπ electrons. The RR spectrum of MbNO (Mb = myoglobin) at pH 8.4 is due solely to six-coordinate heme-NO, but lowering the pH to 5.8 converts the RR spectrum to one characteristic of five-coordinate heme-NO, consistent with Fe-ImH (ImH = imidazole) dissociation via protonation. The Fe-NO stretching frequencies are at 553 and 596 cm−1 for the high- and low-pH forms, as expected, but the low-pH form shows an additional 15NO-sensitive band, at 573 cm−1, which is assigned to Fe-N-O bending in the five-coordinate complex. The RR spectrum of MbO2 shows a shoulder at −270 cm−1, which shifts down by −3 cm−1 upon 18O2 substitution, and is suggested to contain the Fe-ImH stretching mode. The weakness of vFe-imH, relative to [formula omitted], is attributable to the lack of ImH involvement in the heme π bonding.
Original language | English (US) |
---|---|
Pages (from-to) | 6989-6995 |
Number of pages | 7 |
Journal | Biochemistry |
Volume | 21 |
Issue number | 26 |
DOIs | |
State | Published - Dec 1 1982 |
ASJC Scopus subject areas
- Biochemistry