Respawn: Energy-Efficient Fault-Tolerance for Spiking Neural Networks considering Unreliable Memories

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, Muhammad Shafique

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Spiking neural networks (SNNs) have shown a potential for having low energy with unsupervised learning capabilities due to their biologically-inspired computation. However, they may suffer from accuracy degradation if their processing is performed under the presence of hardware-induced faults in memories, which can come from manufacturing defects or voltage-induced approximation errors. Since recent works still focus on the fault-modeling and random fault injection in SNNs, the impact of memory faults in SNN hardware architectures on accuracy and the respective fault-mitigation techniques are not thoroughly explored. Toward this, we propose ReSpawn, a novel framework for mitigating the negative impacts of faults in both the off-chip and on-chip memories for resilient and energy-efficient SNNs. The key mechanisms of ReSpawn are: (1) analyzing the fault tolerance of SNNs; and (2) improving the SNN fault tolerance through (a) fault-aware mapping (FAM) in memories, and (b) fault-aware training-and-mapping (FATM). If the training dataset is not fully available, FAM is employed through efficient bit-shuffling techniques that place the significant bits on the non-faulty memory cells and the insignificant bits on the faulty ones, while minimizing the memory access energy. Meanwhile, if the training dataset is fully available, FATM is employed by considering the faulty memory cells in the data mapping and training processes. The experimental results show that, compared to the baseline SNN without fault-mitigation techniques, ReSpawn with a fault-aware mapping scheme improves the accuracy by up to 70% for a network with 900 neurons without retraining.

Original languageEnglish (US)
Title of host publication2021 40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665445078
DOIs
StatePublished - 2021
Event40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021 - Munich, Germany
Duration: Nov 1 2021Nov 4 2021

Publication series

NameIEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
Volume2021-November
ISSN (Print)1092-3152

Conference

Conference40th IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2021
Country/TerritoryGermany
CityMunich
Period11/1/2111/4/21

Keywords

  • Approximation errors
  • Energy efficiency
  • Fault tolerance
  • Fault-aware mapping
  • Fault-aware training
  • Manufacturing defects
  • Memory faults
  • Spiking neural networks

ASJC Scopus subject areas

  • Software
  • Computer Science Applications
  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'Respawn: Energy-Efficient Fault-Tolerance for Spiking Neural Networks considering Unreliable Memories'. Together they form a unique fingerprint.

Cite this