Response of an axially-loaded Terfenol-D rod to a harmonic base excitation

Meghashyam Panyam, Mohammed F. Daqaq

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Performance characteristics of the giant magnetostrictive alloy, Terfenol-D, have been studied by many researchers for actuation, sensing and energy harvesting applications. Mathematical models characterizing the magneto-elastic behavior and describing the effects of bias conditions - compressive prestress and magnetic bias - on the material performance, have been developed. For the most part, the models used to describe the material are linear models that can hide essential features of the dynamic performance. While nonlinear constitutive models of Terfenol-D exist, such models have not been utilized to study the dynamic frequency response characteristics that are essential towards a comprehensive understanding of its performance in actuation, sensing or energy harvesting. To address this problem, this effort investigates the role of empirically determined material nonlinearities in the dynamic performance of Terfenol-D. Towards that objective, a polynomial type stress-strain relation is used to construct a nonlinear distributed-parameters model for a Terfenol-D rod fixed at one end and mass loaded at the other while being subjected to a sinusoidal base excitation. Additionally, the model accounts for the rod being subjected to an axial prestress prior to excitation. Using the method of multiple scales, the nonlinear frequency response of the rod is investigated by obtaining analytical expressions for the steady-state response amplitude. It is demonstrated that the axial prestress results in a shift in the fundamental vibration frequencies of the rod and a change in the effective nonlinearity of the system. A qualitative analysis of the solution reveals that, the magnitude of axial load can be used to maximize the response amplitude over a larger bandwidth of frequencies.

Original languageEnglish (US)
Title of host publicationDevelopment and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation
PublisherAmerican Society of Mechanical Engineers
ISBN (Print)9780791856031
DOIs
StatePublished - 2013
EventASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2013 - Snowbird, UT, United States
Duration: Sep 16 2013Sep 18 2013

Publication series

NameASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2013
Volume1

Other

OtherASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2013
CountryUnited States
CitySnowbird, UT
Period9/16/139/18/13

ASJC Scopus subject areas

  • Artificial Intelligence
  • Civil and Structural Engineering

Fingerprint Dive into the research topics of 'Response of an axially-loaded Terfenol-D rod to a harmonic base excitation'. Together they form a unique fingerprint.

  • Cite this

    Panyam, M., & Daqaq, M. F. (2013). Response of an axially-loaded Terfenol-D rod to a harmonic base excitation. In Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation [SMASIS2013-3313] (ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2013; Vol. 1). American Society of Mechanical Engineers. https://doi.org/10.1115/SMASIS2013-3313