Restoring an image taken through a window covered with dirt or rain

David Eigen, Dilip Krishnan, Rob Fergus

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Photographs taken through a window are often compromised by dirt or rain present on the window surface. Common cases of this include pictures taken from inside a vehicle, or outdoor security cameras mounted inside a protective enclosure. At capture time, defocus can be used to remove the artifacts, but this relies on achieving a shallow depth-of-field and placement of the camera close to the window. Instead, we present a post-capture image processing solution that can remove localized rain and dirt artifacts from a single image. We collect a dataset of clean/corrupted image pairs which are then used to train a specialized form of convolutional neural network. This learns how to map corrupted image patches to clean ones, implicitly capturing the characteristic appearance of dirt and water droplets in natural images. Our models demonstrate effective removal of dirt and rain in outdoor test conditions.

Original languageEnglish (US)
Title of host publicationProceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages633-640
Number of pages8
ISBN (Print)9781479928392
DOIs
StatePublished - 2013
Event2013 14th IEEE International Conference on Computer Vision, ICCV 2013 - Sydney, NSW, Australia
Duration: Dec 1 2013Dec 8 2013

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Other

Other2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Country/TerritoryAustralia
CitySydney, NSW
Period12/1/1312/8/13

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Restoring an image taken through a window covered with dirt or rain'. Together they form a unique fingerprint.

Cite this