TY - JOUR
T1 - Resupply of mesopelagic dissolved iron controlled by particulate iron composition
AU - Bressac, M.
AU - Guieu, C.
AU - Ellwood, M. J.
AU - Tagliabue, A.
AU - Wagener, T.
AU - Laurenceau-Cornec, E. C.
AU - Whitby, H.
AU - Sarthou, G.
AU - Boyd, P. W.
N1 - Funding Information:
We thank the captains and crew of the RV Investigator and RV Pourquoi Pas?, the CSIRO and DT INSU teams for the design and preparation of the mooring line and C. Young and P. Waller for building the TM-RESPIRE. The CSIRO Hydrochemistry team, S. Albani, N. Bhairy, E. Cavan, X. Chan, G. De Liège, J. Derrick, K. Desboeufs, F. D’Ortenzio, A. Dufour, M. Garel, J. Guittonneau, N. Haentjens, S. Helias Nunige, S. Jacquet, P. Jansen, N. Leblond, D. Lefèvre, H. Planquette, C. Ridame, G. Rougier, V. Tallendier, C. Tamburini, A. Tovar-Sanchez and T. Trull, are thanked for their help at sea and/or samples analysis. This project was funded by a Marie Sklodowska-Curie Postdoctoral European Fellowship awarded to M.B. (European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. PIOF-GA-2012-626734 (IRON-IC project)). This study is a contribution to the PEACETIME project (http://peacetime-project.org), a joint initiative of the MERMEX and ChArMEx components supported by CNRS-INSU, IFREMER, CEA and Météo-France as part of the programme MISTRALS coordinated by INSU. This study was also partly funded by the Australian Research Council by a Laureate awarded to P.W.B. (FL160100131) and a Discovery project awarded to M.J.E. and P.W.B. (DP170102108).
Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - The dissolved iron supply controls half of the oceans’ primary productivity. Resupply by the remineralization of sinking particles, and subsequent vertical mixing, largely sustains this productivity. However, our understanding of the drivers of dissolved iron resupply, and their influence on its vertical distribution across the oceans, is still limited due to sparse observations. There is a lack of empirical evidence as to what controls the subsurface iron remineralization due to difficulties in studying mesopelagic biogeochemistry. Here we present estimates of particulate transformations to dissolved iron, concurrent oxygen consumption and iron-binding ligand replenishment based on in situ mesopelagic experiments. Dissolved iron regeneration efficiencies (that is, replenishment over oxygen consumption) were 10- to 100-fold higher in low-dust subantarctic waters relative to higher-dust Mediterranean sites. Regeneration efficiencies are heavily influenced by particle composition. Their make-up dictates ligand release, controls scavenging, modulates ballasting and may lead to the differential remineralization of biogenic versus lithogenic iron. At high-dust sites, these processes together increase the iron remineralization length scale. Modelling reveals that in oceanic regions near deserts, enhanced lithogenic fluxes deepen the ferricline, which alter the vertical patterns of dissolved iron replenishment, and set its redistribution at the global scale. Such wide-ranging regeneration efficiencies drive different vertical patterns in dissolved iron replenishment across oceanic provinces.
AB - The dissolved iron supply controls half of the oceans’ primary productivity. Resupply by the remineralization of sinking particles, and subsequent vertical mixing, largely sustains this productivity. However, our understanding of the drivers of dissolved iron resupply, and their influence on its vertical distribution across the oceans, is still limited due to sparse observations. There is a lack of empirical evidence as to what controls the subsurface iron remineralization due to difficulties in studying mesopelagic biogeochemistry. Here we present estimates of particulate transformations to dissolved iron, concurrent oxygen consumption and iron-binding ligand replenishment based on in situ mesopelagic experiments. Dissolved iron regeneration efficiencies (that is, replenishment over oxygen consumption) were 10- to 100-fold higher in low-dust subantarctic waters relative to higher-dust Mediterranean sites. Regeneration efficiencies are heavily influenced by particle composition. Their make-up dictates ligand release, controls scavenging, modulates ballasting and may lead to the differential remineralization of biogenic versus lithogenic iron. At high-dust sites, these processes together increase the iron remineralization length scale. Modelling reveals that in oceanic regions near deserts, enhanced lithogenic fluxes deepen the ferricline, which alter the vertical patterns of dissolved iron replenishment, and set its redistribution at the global scale. Such wide-ranging regeneration efficiencies drive different vertical patterns in dissolved iron replenishment across oceanic provinces.
UR - http://www.scopus.com/inward/record.url?scp=85074632536&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074632536&partnerID=8YFLogxK
U2 - 10.1038/s41561-019-0476-6
DO - 10.1038/s41561-019-0476-6
M3 - Article
AN - SCOPUS:85074632536
SN - 1752-0894
VL - 12
SP - 995
EP - 1000
JO - Nature Geoscience
JF - Nature Geoscience
IS - 12
ER -