Retinal optical coherence tomography image enhancement via deep learning

Kerry J. Halupka, Bhavna J. Antony, Matthew H. Lee, Katie A. Lucy, Ravneet S. Rai, Hiroshi Ishikawa, Gadi Wollstein, Joel S. Schuman, Rahil Garnavi

Research output: Contribution to journalArticlepeer-review

Abstract

Optical coherence tomography (OCT) images of the retina are a powerful tool for diagnosing and monitoring eye disease. However, they are plagued by speckle noise, which reduces image quality and reliability of assessment. This paper introduces a novel speckle reduction method inspired by the recent successes of deep learning in medical imaging. We present two versions of the network to reflect the needs and preferences of different end-users. Specifically, we train a convolution neural network to denoise cross-sections from OCT volumes of healthy eyes using either (1) mean-squared error, or (2) a generative adversarial network (GAN) with Wasserstein distance and perceptual similarity. We then interrogate the success of both methods with extensive quantitative and qualitative metrics on cross-sections from both healthy and glaucomatous eyes. The results show that the former approach provides state-of-the-art improvement in quantitative metrics such as PSNR and SSIM, and aids layer segmentation. However, the latter approach, which puts more weight on visual perception, outperformed for qualitative comparisons based on accuracy, clarity, and personal preference. Overall, our results demonstrate the effectiveness and efficiency of a deep learning approach to denoising OCT images, while maintaining subtle details in the images.

Original languageEnglish (US)
Article number#342299
Pages (from-to)6205-6221
Number of pages17
JournalBiomedical Optics Express
Volume9
Issue number12
DOIs
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • Biotechnology
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Retinal optical coherence tomography image enhancement via deep learning'. Together they form a unique fingerprint.

Cite this