Revealing the Statistics of Extreme Events Hidden in Short Weather Forecast Data

Justin Finkel, Edwin P. Gerber, Dorian S. Abbot, Jonathan Weare

Research output: Contribution to journalArticlepeer-review


Extreme weather events have significant consequences, dominating the impact of climate on society. While high-resolution weather models can forecast many types of extreme events on synoptic timescales, long-term climatological risk assessment is an altogether different problem. A once-in-a-century event takes, on average, 100 years of simulation time to appear just once, far beyond the typical integration length of a weather forecast model. Therefore, this task is left to cheaper, but less accurate, low-resolution or statistical models. But there is untapped potential in weather model output: despite being short in duration, weather forecast ensembles are produced multiple times a week. Integrations are launched with independent perturbations, causing them to spread apart over time and broadly sample phase space. Collectively, these integrations add up to thousands of years of data. We establish methods to extract climatological information from these short weather simulations. Using ensemble hindcasts by the European Center for Medium-range Weather Forecasting archived in the subseasonal-to-seasonal (S2S) database, we characterize sudden stratospheric warming (SSW) events with multi-centennial return times. Consistent results are found between alternative methods, including basic counting strategies and Markov state modeling. By carefully combining trajectories together, we obtain estimates of SSW frequencies and their seasonal distributions that are consistent with reanalysis-derived estimates for moderately rare events, but with much tighter uncertainty bounds, and which can be extended to events of unprecedented severity that have not yet been observed historically. These methods hold potential for assessing extreme events throughout the climate system, beyond this example of stratospheric extremes.

Original languageEnglish (US)
Article numbere2023AV000881
JournalAGU Advances
Issue number2
StatePublished - Apr 2023


  • ensemble forecast
  • extreme events
  • subseasonal to seasonal
  • sudden stratospheric warming

ASJC Scopus subject areas

  • General Earth and Planetary Sciences


Dive into the research topics of 'Revealing the Statistics of Extreme Events Hidden in Short Weather Forecast Data'. Together they form a unique fingerprint.

Cite this