TY - JOUR
T1 - Reviews and syntheses
T2 - Present, past, and future of the oxygen minimum zone in the northern Indian Ocean
AU - Rixen, Tim
AU - Cowie, Greg
AU - Gaye, Birgit
AU - Goes, Joaquim
AU - Do Rosário Gomes, Helga
AU - R. Hood, Raleigh
AU - Lachkar, Zouhair
AU - Schmidt, Henrike
AU - Segschneider, Joachim
AU - Singh, Arvind
N1 - Funding Information:
Acknowledgements. This work was initiated in December 2018 during a core group meeting of the Second International Indian Ocean Expedition (IIOE-2), in Kiel, Germany, for which we thank the organizers and the entire core group. We would also like to thank the many scientists, technicians, officers and their crews of the numerous research vessels as well as all the colleagues and the various national funding agencies that made this work possible. In particular, we would like to thank the three anonymous reviewers, Annie Bourbonnais, and Viviane Menezes for their constructive and valuable comments, which helped a lot to improve the manuscript. Tim Rixen, Birgit Gaye, and Joachim Segschneider are grateful for the financial support of the research projects CARIMA (Natural versus anthropogenic controls of past monsoon variability in Central Asia recorded in marine archives), CAHOL (Central Asian HOLocene Climate), and MASCARA (Saya de Malha Bank Carbonate Geochemistry) by the German Federal Ministry of Education and Research (BMBF) with the grant numbers 03G0806 and 03G0806B (CARIMA), 03G0864A (CAHOL), and 03G0270B (MASCARA). Joaquim Goes and Helga do Rosário Gomes are supported by grants from the National Aeronautics and Space Administration (NASA; NNX17AG66G-ECO4CAST), the National Science Foundation (NSF; 2019983), and the Gordon and Betty Moore Foundation. Paul Wessels and Walther H. F. Smith are acknowledged for providing the generic mapping tools (GMT).
Publisher Copyright:
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
PY - 2020/12/4
Y1 - 2020/12/4
N2 - Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations 63 M (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20uM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of 0.05uM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21% of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Even though there are a few isolated reports on the occurrence of anoxia prior to 1960, anoxic events have so far not been reported from the open northern Indian Ocean (i.e., other than on shelves) during the last 60 years. Maintenance of functional anoxia in the Arabian Sea OMZ with oxygen concentrations ranging between >0 and 0.05uM is highly extraordinary considering that the monsoon reverses the surface ocean circulation twice a year and turns vast areas of the Arabian Sea from an oligotrophic oceanic desert into one of the most productive regions of the oceans within a few weeks. Thus, the comparably low variability of oxygen concentration in the OMZ implies stable balances between the physical oxygen supply and the biological oxygen consumption, which includes negative feedback mechanisms such as reducing oxygen consumption at decreasing oxygen concentrations (e.g., reduced respiration). Lower biological oxygen consumption is also assumed to be responsible for a less intense OMZ in the Bay of Bengal. According to numerical model results, a decreasing physical oxygen supply via the inflow of water masses from the south intensified the Arabian Sea OMZ during the last 6000 years, whereas a reduced oxygen supply via the inflow of Persian Gulf Water from the north intensifies the OMZ today in response to global warming. The first is supported by data derived from the sedimentary records, and the latter concurs with observations of decreasing oxygen concentrations and a spreading of functional anoxia during the last decades in the Arabian Sea. In the Arabian Sea decreasing oxygen concentrations seem to have initiated a regime shift within the pelagic ecosystem structure, and this trend is also seen in benthic ecosystems. Consequences for biogeochemical cycles are as yet unknown, which, in addition to the poor representation of mesoscale features in global Earth system models, reduces the reliability of estimates of the future OMZ development in the northern Indian Ocean.
AB - Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations 63 M (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20uM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of 0.05uM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21% of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Even though there are a few isolated reports on the occurrence of anoxia prior to 1960, anoxic events have so far not been reported from the open northern Indian Ocean (i.e., other than on shelves) during the last 60 years. Maintenance of functional anoxia in the Arabian Sea OMZ with oxygen concentrations ranging between >0 and 0.05uM is highly extraordinary considering that the monsoon reverses the surface ocean circulation twice a year and turns vast areas of the Arabian Sea from an oligotrophic oceanic desert into one of the most productive regions of the oceans within a few weeks. Thus, the comparably low variability of oxygen concentration in the OMZ implies stable balances between the physical oxygen supply and the biological oxygen consumption, which includes negative feedback mechanisms such as reducing oxygen consumption at decreasing oxygen concentrations (e.g., reduced respiration). Lower biological oxygen consumption is also assumed to be responsible for a less intense OMZ in the Bay of Bengal. According to numerical model results, a decreasing physical oxygen supply via the inflow of water masses from the south intensified the Arabian Sea OMZ during the last 6000 years, whereas a reduced oxygen supply via the inflow of Persian Gulf Water from the north intensifies the OMZ today in response to global warming. The first is supported by data derived from the sedimentary records, and the latter concurs with observations of decreasing oxygen concentrations and a spreading of functional anoxia during the last decades in the Arabian Sea. In the Arabian Sea decreasing oxygen concentrations seem to have initiated a regime shift within the pelagic ecosystem structure, and this trend is also seen in benthic ecosystems. Consequences for biogeochemical cycles are as yet unknown, which, in addition to the poor representation of mesoscale features in global Earth system models, reduces the reliability of estimates of the future OMZ development in the northern Indian Ocean.
UR - http://www.scopus.com/inward/record.url?scp=85097396095&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85097396095&partnerID=8YFLogxK
U2 - 10.5194/bg-17-6051-2020
DO - 10.5194/bg-17-6051-2020
M3 - Review article
AN - SCOPUS:85097396095
SN - 1726-4170
VL - 17
SP - 6051
EP - 6080
JO - Biogeosciences
JF - Biogeosciences
IS - 23
ER -