TY - JOUR
T1 - Ring-expanding olefin metathesis
T2 - A route to highly active unsymmetrical macrocyclic oligomeric co-salen catalysts for the hydrolytic kinetic resolution of epoxides
AU - Zheng, Xiaolai
AU - Jones, Christopher W.
AU - Weck, Marcus
PY - 2007/2/7
Y1 - 2007/2/7
N2 - In the presence of the third generation Grubbs catalyst, the ring-expanding olefin metathesis of a monocyclooct-4-en-1-yl functionalized salen ligand and the corresponding Co(II)(salen) complex at low monomer concentrations results in the exclusive formation of macrocyclic oligomeric structures with the salen moieties being attached in an unsymmetrical, flexible, pendent manner. The TOF-MALDI mass spectrometry reveals that the resulting macrocyclic oligomers consist predominantly of dimeric to tetrameric species, with detectable traces of higher homologues up to a decamer. Upon activation under aerobic and acidic conditions, these Co(salen) macrocycles exhibit extremely high reactivities and selectivities in the hydrolytic kinetic resolution (HKR) of a variety of racemic terminal epoxides under neat conditions with very low catalyst loadings. The excellent catalytic properties can be explained in terms of the new catalyst's appealing structural features, namely, the flexible oligomer backbone, the unsymmetrical pendent immobilization motif of the catalytic sites, and the high local concentration of Co(salen) species resulting from the macrocyclic framework. This ring-expanding olefin metathesis is suggested to be a simple way to prepare tethered metal complexes that are endowed with key features - (i) a high local concentration of metal complexes and (ii) a flexible, single point of attachment to the support - that facilitate rapid and efficient catalysis when a bimetallic transition state is required.
AB - In the presence of the third generation Grubbs catalyst, the ring-expanding olefin metathesis of a monocyclooct-4-en-1-yl functionalized salen ligand and the corresponding Co(II)(salen) complex at low monomer concentrations results in the exclusive formation of macrocyclic oligomeric structures with the salen moieties being attached in an unsymmetrical, flexible, pendent manner. The TOF-MALDI mass spectrometry reveals that the resulting macrocyclic oligomers consist predominantly of dimeric to tetrameric species, with detectable traces of higher homologues up to a decamer. Upon activation under aerobic and acidic conditions, these Co(salen) macrocycles exhibit extremely high reactivities and selectivities in the hydrolytic kinetic resolution (HKR) of a variety of racemic terminal epoxides under neat conditions with very low catalyst loadings. The excellent catalytic properties can be explained in terms of the new catalyst's appealing structural features, namely, the flexible oligomer backbone, the unsymmetrical pendent immobilization motif of the catalytic sites, and the high local concentration of Co(salen) species resulting from the macrocyclic framework. This ring-expanding olefin metathesis is suggested to be a simple way to prepare tethered metal complexes that are endowed with key features - (i) a high local concentration of metal complexes and (ii) a flexible, single point of attachment to the support - that facilitate rapid and efficient catalysis when a bimetallic transition state is required.
UR - http://www.scopus.com/inward/record.url?scp=33846783022&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846783022&partnerID=8YFLogxK
U2 - 10.1021/ja0641406
DO - 10.1021/ja0641406
M3 - Article
C2 - 17263391
AN - SCOPUS:33846783022
SN - 0002-7863
VL - 129
SP - 1105
EP - 1112
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 5
ER -