Risk-Aware Linear Bandits with Application in Smart Order Routing

Jingwei Ji, Renyuan Xu, Ruihao Zhu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Motivated by practical considerations in machine learning for financial decision-making, such as risk-aversion and large action space, we initiate the study of risk-aware linear bandits. Specifically, we consider regret minimization under the mean-variance measure when facing a set of actions whose reward can be expressed as linear functions of (initially) unknown parameters. We first propose the Risk-Aware Explore-then-Commit (RISE) algorithm driven by the variance-minimizing G-optimal design. Then, we rigorously analyze its regret upper bound to show that, by leveraging the linear structure, the algorithm can dramatically reduce the regret when compared to existing methods. Finally, we demonstrate the performance of the RISE algorithm by conducting extensive numerical experiments in a synthetic smart order routing setup. Our results show that the RISE algorithm can outperform the competing methods, especially when the decision-making scenario becomes more complex.

Original languageEnglish (US)
Title of host publicationProceedings of the 3rd ACM International Conference on AI in Finance, ICAIF 2022
PublisherAssociation for Computing Machinery, Inc
Pages334-342
Number of pages9
ISBN (Electronic)9781450393768
DOIs
StatePublished - Nov 2 2022
Event3rd ACM International Conference on AI in Finance, ICAIF 2022 - New York, United States
Duration: Nov 2 2022Nov 4 2022

Publication series

NameProceedings of the 3rd ACM International Conference on AI in Finance, ICAIF 2022

Conference

Conference3rd ACM International Conference on AI in Finance, ICAIF 2022
Country/TerritoryUnited States
CityNew York
Period11/2/2211/4/22

Keywords

  • algorithmic trading
  • bandit
  • machine learning theory
  • mean-variance
  • online learning
  • regret analysis
  • risk-aware decision-making
  • smart order routing

ASJC Scopus subject areas

  • Artificial Intelligence
  • Finance

Fingerprint

Dive into the research topics of 'Risk-Aware Linear Bandits with Application in Smart Order Routing'. Together they form a unique fingerprint.

Cite this