Risk-sensitive mean-field-type games with Lp-norm drifts

Hamidou Tembine

Research output: Contribution to journalArticlepeer-review


Abstract We study how risk-sensitive players act in situations where the outcome is influenced not only by the state-action profile but also by the distribution of it. In such interactive decision-making problems, the classical mean-field game framework does not apply. We depart from most of the mean-field games literature by presuming that a decision-maker may include its own-state distribution in its decision. This leads to the class of mean-field-type games. In mean-field-type situations, a single decision-maker may have a big impact on the mean-field terms for which new type of optimality equations are derived. We establish a finite dimensional stochastic maximum principle for mean-field-type games where the drift functions have a p-norm structure which weaken the classical Lipschitz and differentiability assumptions. Sufficient optimality equations are established via Dynamic Programming Principle but in infinite dimension. Using de Finetti-Hewitt-Savage theorem, we show that a propagation of chaos property with virtual particles holds for the non-linear McKean-Vlasov dynamics.

Original languageEnglish (US)
Article number6454
Pages (from-to)224-237
Number of pages14
StatePublished - Sep 1 2015


  • Game theory
  • Mean-field
  • Risk-sensitive

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Risk-sensitive mean-field-type games with Lp-norm drifts'. Together they form a unique fingerprint.

Cite this