Robot Learning via Human Adversarial Games

Jiali Duan, Qian Wang, Lerrel Pinto, C. C. Jay Kuo, Stefanos Nikolaidis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Much work in robotics has focused on 'humanin-the-loop' learning techniques that improve the efficiency of the learning process. However, these algorithms have made the strong assumption of a cooperating human supervisor that assists the robot. In reality, human observers tend to also act in an adversarial manner towards deployed robotic systems. We show that this can in fact improve the robustness of the learned models by proposing a physical framework that leverages perturbations applied by a human adversary, guiding the robot towards more robust models. In a manipulation task, we show that grasping success improves significantly when the robot trains with a human adversary as compared to training in a self-supervised manner.

Original languageEnglish (US)
Title of host publication2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1056-1063
Number of pages8
ISBN (Electronic)9781728140049
DOIs
StatePublished - Nov 2019
Event2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019 - Macau, China
Duration: Nov 3 2019Nov 8 2019

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019
CountryChina
CityMacau
Period11/3/1911/8/19

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Robot Learning via Human Adversarial Games'. Together they form a unique fingerprint.

Cite this