Robot Navigation under MITL Constraints Using Time-Dependent Vector Field Based Control

Christos N. Mavridis, Constantinos Vrohidis, John S. Baras, Kostas J. Kyriakopoulos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we consider the problem of robot navigation, under spatial and temporal constraints, modeled as Metric Interval Temporal Logic (MITL) formulas. We introduce appropriate control schemes, driven by time-dependent vector fields, that satisfy both the problems of (a) entering an arbitrary neighborhood of the workspace within a given time interval, and, (b) avoiding collision with any given obstacle. We model the problems (a) and (b) as MITL formulas, defined upon a specific class of atomic propositions, and proceed in building more complex MITL expressions that can be decomposed into a conjunction of the former formulas. Finally, we propose a way to generate a hybrid automaton, whose execution satisfies the given MITL formula, by appropriately composing the control schemes. We validate our methodology via a numerical simulation.

Original languageEnglish (US)
Title of host publication2019 IEEE 58th Conference on Decision and Control, CDC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages232-237
Number of pages6
ISBN (Electronic)9781728113982
DOIs
StatePublished - Dec 2019
Event58th IEEE Conference on Decision and Control, CDC 2019 - Nice, France
Duration: Dec 11 2019Dec 13 2019

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume2019-December
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Conference

Conference58th IEEE Conference on Decision and Control, CDC 2019
Country/TerritoryFrance
CityNice
Period12/11/1912/13/19

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Robot Navigation under MITL Constraints Using Time-Dependent Vector Field Based Control'. Together they form a unique fingerprint.

Cite this