TY - GEN
T1 - Robust Beam Tracking and Data Communication in Millimeter Wave Mobile Networks
AU - Shahsavari, Shahram
AU - Amir Khojastepour, Mohammad A.
AU - Erkip, Elza
N1 - Funding Information:
This work is supported by NEC Laboratories America and National Science Foundation grants 1547332 and 1527750.
Publisher Copyright:
© 2019 IFIP.
PY - 2019/6
Y1 - 2019/6
N2 - Millimeter-wave (mmWave) bands have shown the potential to enable high data rates for next generation mobile networks. In order to cope with high path loss and severe shadowing in mmWave frequencies, it is essential to employ massive antenna arrays and generate narrow transmission patterns (beams). When narrow beams are used, mobile user tracking is indispensable for reliable communication. In this paper, a joint beam tracking and data communication strategy is proposed in which, the base station (BS) increases the beamwidth during data transmission to compensate for location uncertainty caused by user mobility. In order to evade low beamforming gains due to widening the beam pattern, a probing scheme is proposed in which the BS transmits a number of probing packets to refine the estimation of angle of arrival based on the user feedback, which enables reliable data transmission through narrow beams again. In the proposed scheme, time is divided into similar frames each consisting of a probing phase followed by a data communication phase. A steady state analysis is provided based on which, the duration of data transmission and probing phases are optimized. Furthermore, the results are generalized to consider practical constraints such as minimum feasible beamwidth. Simulation results reveal that the proposed method outperforms well-known approaches such as optimized beam sweeping.
AB - Millimeter-wave (mmWave) bands have shown the potential to enable high data rates for next generation mobile networks. In order to cope with high path loss and severe shadowing in mmWave frequencies, it is essential to employ massive antenna arrays and generate narrow transmission patterns (beams). When narrow beams are used, mobile user tracking is indispensable for reliable communication. In this paper, a joint beam tracking and data communication strategy is proposed in which, the base station (BS) increases the beamwidth during data transmission to compensate for location uncertainty caused by user mobility. In order to evade low beamforming gains due to widening the beam pattern, a probing scheme is proposed in which the BS transmits a number of probing packets to refine the estimation of angle of arrival based on the user feedback, which enables reliable data transmission through narrow beams again. In the proposed scheme, time is divided into similar frames each consisting of a probing phase followed by a data communication phase. A steady state analysis is provided based on which, the duration of data transmission and probing phases are optimized. Furthermore, the results are generalized to consider practical constraints such as minimum feasible beamwidth. Simulation results reveal that the proposed method outperforms well-known approaches such as optimized beam sweeping.
UR - http://www.scopus.com/inward/record.url?scp=85075879185&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075879185&partnerID=8YFLogxK
U2 - 10.23919/WiOPT47501.2019.9144146
DO - 10.23919/WiOPT47501.2019.9144146
M3 - Conference contribution
AN - SCOPUS:85075879185
T3 - Proceedings - 17th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2019
BT - Proceedings - 17th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2019
A2 - de Pelligrini, Francesco
A2 - de Pelligrini, Francesco
A2 - Saad, Walid
A2 - Tan, Chee Wei
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 17th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2019
Y2 - 3 June 2019 through 7 June 2019
ER -