Robust State Estimation Against Measurement and Network Parameter Errors

Yuzhang Lin, Ali Abur

Research output: Contribution to journalArticlepeer-review

Abstract

Errors in network parameters can cause serious bias in state estimation solution and make good measurements identified and discarded as bad data. This paper addresses this issue by developing a state estimator that remains robust against parameter errors. This is accomplished by modifying the formulation of the well-known least absolute value state estimator in order to identify and reject not only gross measurement errors, but also parameter errors in the network model. The resulting state estimate will not only be free from the impact of erroneous parameters, but will also reliably estimate and correct the erroneous parameters at the same time. The proposed approach can be formulated as a linear programming (LP) problem, and solved in a computational efficient manner by existing LP solvers. Simulation results show that it is effective under different types of parameter errors, gross measurement errors, and Gaussian noise.

Original languageEnglish (US)
Article number8259469
Pages (from-to)4751-4759
Number of pages9
JournalIEEE Transactions on Power Systems
Volume33
Issue number5
DOIs
StatePublished - Sep 2018

Keywords

  • Least absolute value
  • parameter estimation
  • power system modelling
  • robustness
  • state estimation

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Robust State Estimation Against Measurement and Network Parameter Errors'. Together they form a unique fingerprint.

Cite this