TY - GEN
T1 - Rounding parallel repetitions of unique games
AU - Barak, Boaz
AU - Hardt, Moritz
AU - Regev, Oded
AU - Haviv, Ishay
AU - Rao, Anup
AU - Steurer, David
PY - 2008
Y1 - 2008
N2 - We show a connection between the semidefinite relaxation of unique games and their behavior under parallel repetition. Specifically, denoting by val(G) the value of a two-prover unique game G, and by sdpval(G) the value of a natural semidefinite program to approximate val(G), we prove that for every ℓ ∈ N, if sdpval(G) ≥ 1 - δ, then Val(Gℓ) ≥ 1 - √sℓδ. Here, Gℓ denotes the ℓ-fold parallel repetition of G, and s = O(log(k/δ)), where k denotes the alphabet size of the game. For the special case where G is an XOR game (i.e., k = 2), we obtain the same bound but with s as an absolute constant. Our bounds on s are optimal up to a factor of O(log1/δ)). For games with a significant gap between the quantities val(G) and sdpval(G), our result implies that val(Gℓ) may be much larger than val(G)ℓ, giving a counterexample to the strong parallel repetition conjecture. In a recent breakthrough, Raz (FOCS '08) has shown such an example using the max-cut game on odd cycles. Our results are based on a generalization of his techniques.
AB - We show a connection between the semidefinite relaxation of unique games and their behavior under parallel repetition. Specifically, denoting by val(G) the value of a two-prover unique game G, and by sdpval(G) the value of a natural semidefinite program to approximate val(G), we prove that for every ℓ ∈ N, if sdpval(G) ≥ 1 - δ, then Val(Gℓ) ≥ 1 - √sℓδ. Here, Gℓ denotes the ℓ-fold parallel repetition of G, and s = O(log(k/δ)), where k denotes the alphabet size of the game. For the special case where G is an XOR game (i.e., k = 2), we obtain the same bound but with s as an absolute constant. Our bounds on s are optimal up to a factor of O(log1/δ)). For games with a significant gap between the quantities val(G) and sdpval(G), our result implies that val(Gℓ) may be much larger than val(G)ℓ, giving a counterexample to the strong parallel repetition conjecture. In a recent breakthrough, Raz (FOCS '08) has shown such an example using the max-cut game on odd cycles. Our results are based on a generalization of his techniques.
UR - http://www.scopus.com/inward/record.url?scp=57949103885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57949103885&partnerID=8YFLogxK
U2 - 10.1109/FOCS.2008.55
DO - 10.1109/FOCS.2008.55
M3 - Conference contribution
AN - SCOPUS:57949103885
SN - 9780769534367
T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS
SP - 374
EP - 383
BT - Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008
T2 - 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008
Y2 - 25 October 2008 through 28 October 2008
ER -