Satisfaction equilibrium: A general framework for QoS provisioning in self-configuring networks

Samir M. Perlaza, Hamidou Tembine, Samson Lasaulce, Mérouane Debbah

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper is concerned with the concept of equilibrium and quality of service (QoS) provisioning in self-configuring wireless networks with non-cooperative radio devices (RD). In contrast with the Nash equilibrium (NE), where RDs are interested in selfishly maximizing its QoS, we present a concept of equilibrium, named satisfaction equilibrium (SE), where RDs are interested only in guaranteing a minimum QoS. We provide the conditions for the existence and the uniqueness of the SE. Later, in order to provide an equilibrium selection framework for the SE, we introduce the concept of effort or cost of satisfaction, for instance, in terms of transmit power levels, constellation sizes, etc. Using the idea of effort, the set of efficient SE (ESE) is defined. At the ESE, transmitters satisfy their minimum QoS incurring in the lowest effort. We prove that contrary to the (generalized) NE, at least one ESE always exists whenever the network is able to simultaneously support the individual QoS requests. Finally, we provide a fully decentralized algorithm to allow self-configuring networks to converge to one of the SE relying only on local information.

Original languageEnglish (US)
Title of host publication2010 IEEE Global Telecommunications Conference, GLOBECOM 2010
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781424456383
DOIs
StatePublished - 2010
Event53rd IEEE Global Communications Conference, GLOBECOM 2010 - Miami, FL, United States
Duration: Dec 6 2010Dec 10 2010

Publication series

NameGLOBECOM - IEEE Global Telecommunications Conference

Other

Other53rd IEEE Global Communications Conference, GLOBECOM 2010
Country/TerritoryUnited States
CityMiami, FL
Period12/6/1012/10/10

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Satisfaction equilibrium: A general framework for QoS provisioning in self-configuring networks'. Together they form a unique fingerprint.

Cite this