Scalable Diffusion Models with Transformers

William Peebles, Saining Xie

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops - through increased transformer depth/width or increased number of input tokens - consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512×512 and 256×256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.

Original languageEnglish (US)
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4172-4182
Number of pages11
ISBN (Electronic)9798350307184
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: Oct 2 2023Oct 6 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period10/2/2310/6/23

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Scalable Diffusion Models with Transformers'. Together they form a unique fingerprint.

Cite this