Scalar transport in compressible flow

M. Vergassola, M. Avellaneda

Research output: Contribution to journalArticlepeer-review


Transport of scalar fields in compressible flow is investigated. The effective equations governing the transport at scales large compared to those of the advecting flow v are derived by using multi-scale techniques. Ballistic transport generally takes place when both the solenoidal and the potential components of v do not vanish, despite of the fact that v has zero average value. The calculation of the effective ballistic velocity Vb is reduced to the solution of one auxiliary equation. An analytic expression for Vb is derived in some special instances, i.e. flows depending on a single coordinate, random with short correlation times and slightly compressible cellular flow. The effective mean velocity Vb vanishes for velocity fields which are either incompressible or potential and time-independent. For generic compressible flow, the most general conditions ensuring the absence of ballistic transport are isotropy and/or parity invariance. When Vb vanishes (or in the frame of reference comoving with velocity Vb), standard diffusive transport takes place. It is known that diffusion is always enhanced by incompressible flow. On the contrary, we show that diffusion is depleted in the presence of time-independent potential flow. Trapping effects due to potential wells are responsible for this depletion. For time-dependent potential flow or generic compressible flow, transport rates are enhanced or depleted depending on the detailed structure of the velocity field.

Original languageEnglish (US)
Pages (from-to)148-166
Number of pages19
JournalPhysica D: Nonlinear Phenomena
Issue number1-2
StatePublished - 1997

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Condensed Matter Physics
  • Applied Mathematics


Dive into the research topics of 'Scalar transport in compressible flow'. Together they form a unique fingerprint.

Cite this