Abstract
Dimensional scaling laws are developed as an approach to understanding the energy dependence of high-energy scattering processes at fixed center-of-mass angle. Given a reasonable assumption on the short-distance behavior of bound states, and the absence of an internal mass scale, we show that at large s and t, dσdt(A B→C D)∼s-n+2f(ts); n is the total number of fields in A, B, C, and D which carry a finite fraction of the momentum. A similar scaling law is obtained for large-pinclusive scattering. When the quark model is used to specify n, we find good agreement with experiments. For instance, this accounts naturally for the (q2)-2 asymptotic behavior of the proton form factor. We examine in detail the field-theoretic foundations of the scaling laws and the assumption which needs to be made about the short-distance and infrared behavior of a bound state.
Original language | English (US) |
---|---|
Pages (from-to) | 1309-1330 |
Number of pages | 22 |
Journal | Physical Review D |
Volume | 11 |
Issue number | 5 |
DOIs | |
State | Published - 1975 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)