Scaling limits for minimal and random spanning trees in two dimensions

Michael Aizenman, Almut Burchard, Charles M. Newman, David B. Wilson

Research output: Contribution to journalArticle

Abstract

A general formulation is presented for continuum scaling limits of stochastic spanning trees. A spanning tree is expressed in this limit through a consistent collection of subtrees, which includes a tree for every finite set of endpoints in ℝd. Tightness of the distribution, as δ → 0, is established for the following two-dimensional examples: the uniformly random spanning tree on δℤ2, the minimal spanning tree on δSℤ2 (with random edge lengths), and the Euclidean minimal spanning tree on a Poisson process of points in ℝ2 with density δ-2. In each case, sample trees are proven to have the following properties, with probability 1 with respect to any of the limiting measures: (i) there is a single route to infinity (as was known for δ > 0); (ii) the tree branches are given by curves which are regular in the sense of Hölder continuity; (iii) the branches are also rough, in the sense that their Hausdorff dimension exceeds 1; (iv) there is a random dense subset of ℝ2, of dimension strictly between 1 and 2, on the complement of which (and only there) the spanning subtrees are unique with continuous dependence on the endpoints; (v) branching occurs at countably many points in ℝ2; and (vi) the branching numbers are uniformly bounded. The results include tightness for the loop-erased random walk in two dimensions. The proofs proceed through the derivation of scale-invariant power bounds on the probabilities of repeated crossings of annuli.

Original languageEnglish (US)
Pages (from-to)319-367
Number of pages49
JournalRandom Structures and Algorithms
Volume15
Issue number3-4
DOIs
StatePublished - 1999

ASJC Scopus subject areas

  • Software
  • Mathematics(all)
  • Computer Graphics and Computer-Aided Design
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Scaling limits for minimal and random spanning trees in two dimensions'. Together they form a unique fingerprint.

Cite this