TY - JOUR
T1 - Scattering for the two-dimensional energy-critical wave equation
AU - Ibrahim, Slim
AU - Majdoub, Mohamed
AU - Masmoudi, Nader
AU - Nakanishi, Kenji
PY - 2009/11
Y1 - 2009/11
N2 - We investigate existence and asymptotic completeness of the wave operators for the nonlinear Klein-Gordon equation with a defocusing exponential nonlinearity in two space dimensions. A certain threshold is defined based on the value of the conserved Hamiltonian, below which the exponential potential energy is dominated by the kinetic energy via a Trudinger-Moser-type inequality. We prove that if the energy is below or equal to the critical value, then the solution approaches a free Klein-Gordon solution at the time infinity. An interesting feature in the critical case is that the Strichartz estimate together with Sobolev-type inequalities cannot control the nonlinear term uniformly on each time interval: it crucially depends on how much the energy is concentrated. Thus we have to trace concentration of the energy along time, in order to set up favorable nonlinear estimates, and only after that we can apply Bourgain's induction argument (or any other similar one).
AB - We investigate existence and asymptotic completeness of the wave operators for the nonlinear Klein-Gordon equation with a defocusing exponential nonlinearity in two space dimensions. A certain threshold is defined based on the value of the conserved Hamiltonian, below which the exponential potential energy is dominated by the kinetic energy via a Trudinger-Moser-type inequality. We prove that if the energy is below or equal to the critical value, then the solution approaches a free Klein-Gordon solution at the time infinity. An interesting feature in the critical case is that the Strichartz estimate together with Sobolev-type inequalities cannot control the nonlinear term uniformly on each time interval: it crucially depends on how much the energy is concentrated. Thus we have to trace concentration of the energy along time, in order to set up favorable nonlinear estimates, and only after that we can apply Bourgain's induction argument (or any other similar one).
UR - http://www.scopus.com/inward/record.url?scp=77957041378&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957041378&partnerID=8YFLogxK
U2 - 10.1215/00127094-2009-053
DO - 10.1215/00127094-2009-053
M3 - Article
AN - SCOPUS:77957041378
SN - 0012-7094
VL - 150
SP - 287
EP - 329
JO - Duke Mathematical Journal
JF - Duke Mathematical Journal
IS - 2
ER -