See to Touch: Learning Tactile Dexterity through Visual Incentives

Irmak Guzey, Yinlong Dai, Ben Evans, Soumith Chintala, Lerrel Pinto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Equipping multi-fingered robots with tactile sensing is crucial for achieving the precise, contact-rich, and dexterous manipulation that humans excel at. However, relying solely on tactile sensing fails to provide adequate cues for reasoning about objects' spatial configurations, limiting the ability to correct errors and adapt to changing situations. In this paper, we present Tactile Adaptation from Visual Incentives (TAVI), a new framework that enhances tactile-based dexterity by optimizing dexterous policies using vision-based rewards. First, we use a contrastive-based objective to learn visual representations. Next, we construct a reward function using these visual representations through optimal-transport based matching on one human demonstration. Finally, we use online reinforcement learning on our robot to optimize tactile-based policies that maximize the visual reward. On six challenging tasks, such as peg pick-and-place, unstacking bowls, and flipping slender objects, TAVI achieves a success rate of 73% using our four-fingered Allegro robot hand. The increase in performance is 108% higher than policies using tactile and vision-based rewards and 135% higher than policies without tactile observational input. Robot videos are best viewed on our project website: https://see-to-touch.github.io/.

Original languageEnglish (US)
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages13825-13832
Number of pages8
ISBN (Electronic)9798350384574
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: May 13 2024May 17 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period5/13/245/17/24

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'See to Touch: Learning Tactile Dexterity through Visual Incentives'. Together they form a unique fingerprint.

Cite this