TY - JOUR
T1 - Selective constraint, background selection, and mutation accumulation variability within and between human populations
AU - Hodgkinson, Alan
AU - Casals, Ferran
AU - Idaghdour, Youssef
AU - Grenier, Jean Christophe
AU - Hernandez, Ryan D.
AU - Awadalla, Philip
N1 - Funding Information:
We would like to thank Julie Hussin and Gil McVean for useful discussions and the Canadian Foundation for Innovation, Genome Quebec and the Ministry of Development, Exploration, Innovation and Economics (MDEIE) grants to PA for funding.
PY - 2013/7/23
Y1 - 2013/7/23
N2 - Background: Regions of the genome that are under evolutionary constraint across multiple species have previously been used to identify functional sequences in the human genome. Furthermore, it is known that there is an inverse relationship between evolutionary constraint and the allele frequency of a mutation segregating in human populations, implying a direct relationship between interspecies divergence and fitness in humans. Here we utilise this relationship to test differences in the accumulation of putatively deleterious mutations both between populations and on the individual level.Results: Using whole genome and exome sequencing data from Phase 1 of the 1000 Genome Project for 1,092 individuals from 14 worldwide populations we show that minor allele frequency (MAF) varies as a function of constraint around both coding regions and non-coding sites genome-wide, implying that negative, rather than positive, selection primarily drives the distribution of alleles among individuals via background selection. We find a strong relationship between effective population size and the depth of depression in MAF around the most conserved genes, suggesting that populations with smaller effective size are carrying more deleterious mutations, which also translates into higher genetic load when considering the number of putatively deleterious alleles segregating within each population. Finally, given the extreme richness of the data, we are now able to classify individual genomes by the accumulation of mutations at functional sites using high coverage 1000 Genomes data. Using this approach we detect differences between 'healthy' individuals within populations for the distributions of putatively deleterious rare alleles they are carrying.Conclusions: These findings demonstrate the extent of background selection in the human genome and highlight the role of population history in shaping patterns of diversity between human individuals. Furthermore, we provide a framework for the utility of personal genomic data for the study of genetic fitness and diseases.
AB - Background: Regions of the genome that are under evolutionary constraint across multiple species have previously been used to identify functional sequences in the human genome. Furthermore, it is known that there is an inverse relationship between evolutionary constraint and the allele frequency of a mutation segregating in human populations, implying a direct relationship between interspecies divergence and fitness in humans. Here we utilise this relationship to test differences in the accumulation of putatively deleterious mutations both between populations and on the individual level.Results: Using whole genome and exome sequencing data from Phase 1 of the 1000 Genome Project for 1,092 individuals from 14 worldwide populations we show that minor allele frequency (MAF) varies as a function of constraint around both coding regions and non-coding sites genome-wide, implying that negative, rather than positive, selection primarily drives the distribution of alleles among individuals via background selection. We find a strong relationship between effective population size and the depth of depression in MAF around the most conserved genes, suggesting that populations with smaller effective size are carrying more deleterious mutations, which also translates into higher genetic load when considering the number of putatively deleterious alleles segregating within each population. Finally, given the extreme richness of the data, we are now able to classify individual genomes by the accumulation of mutations at functional sites using high coverage 1000 Genomes data. Using this approach we detect differences between 'healthy' individuals within populations for the distributions of putatively deleterious rare alleles they are carrying.Conclusions: These findings demonstrate the extent of background selection in the human genome and highlight the role of population history in shaping patterns of diversity between human individuals. Furthermore, we provide a framework for the utility of personal genomic data for the study of genetic fitness and diseases.
UR - http://www.scopus.com/inward/record.url?scp=84880334976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84880334976&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-14-495
DO - 10.1186/1471-2164-14-495
M3 - Article
C2 - 23875710
AN - SCOPUS:84880334976
SN - 1471-2164
VL - 14
JO - BMC Genomics
JF - BMC Genomics
IS - 1
M1 - 495
ER -