Abstract
Harnessing snapping, an instability phenomenon observed in nature (e.g., Venus flytraps), for autonomy has attracted growing interest in autonomous soft robots. However, achieving self-sustained snapping and snapping-driven autonomous motions in soft robots remains largely unexplored. Here, harnessing bistable, ribbon ring-like structures for realizing self-sustained snapping in a library of soft liquid-crystal elastomer wavy rings under constant thermal and photothermal actuation are reported. The self-sustained snapping induces continuous ring flipping that drives autonomous dancing or crawling motions on the ground and underwater. The 3D, free-standing wavy rings employ either a highly symmetric or symmetry-broken twisted shape with tunable geometric asymmetries. It is found that the former favors periodic self-dancing motion in place due to isotropic friction, while the latter shows a directional crawling motion along the predefined axis of symmetry during fabrication due to asymmetric friction. It shows that the crawling speed can be tuned by the geometric asymmetries with a peak speed achieved at the highest geometric asymmetry. Lastly, it is shown that the autonomous crawling ring can also adapt its body shape to pass through a confined space that is over 30% narrower than its body size.
Original language | English (US) |
---|---|
Article number | 2207372 |
Journal | Advanced Materials |
Volume | 35 |
Issue number | 7 |
DOIs | |
State | Published - Feb 16 2023 |
Keywords
- autonomous
- bistable rings
- liquid-crystal elastomers
- snapping instabilities
- soft robots
ASJC Scopus subject areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering