TY - GEN
T1 - Sensitivity analysis of deep neural networks
AU - Shu, Hai
AU - Zhu, Hongtu
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org).
PY - 2019
Y1 - 2019
N2 - Deep neural networks (DNNs) have achieved superior performance in various prediction tasks, but can be very vulnerable to adversarial examples or perturbations. Therefore, it is crucial to measure the sensitivity of DNNs to various forms of perturbations in real applications. We introduce a novel perturbation manifold and its associated influence measure to quantify the effects of various perturbations on DNN classifiers. Such perturbations include various external and internal perturbations to input samples and network parameters. The proposed measure is motivated by information geometry and provides desirable invariance properties. We demonstrate that our influence measure is useful for four model building tasks: detecting potential 'outliers', analyzing the sensitivity of model architectures, comparing network sensitivity between training and test sets, and locating vulnerable areas. Experiments show reasonably good performance of the proposed measure for the popular DNN models ResNet50 and DenseNet121 on CIFAR10 and MNIST datasets.
AB - Deep neural networks (DNNs) have achieved superior performance in various prediction tasks, but can be very vulnerable to adversarial examples or perturbations. Therefore, it is crucial to measure the sensitivity of DNNs to various forms of perturbations in real applications. We introduce a novel perturbation manifold and its associated influence measure to quantify the effects of various perturbations on DNN classifiers. Such perturbations include various external and internal perturbations to input samples and network parameters. The proposed measure is motivated by information geometry and provides desirable invariance properties. We demonstrate that our influence measure is useful for four model building tasks: detecting potential 'outliers', analyzing the sensitivity of model architectures, comparing network sensitivity between training and test sets, and locating vulnerable areas. Experiments show reasonably good performance of the proposed measure for the popular DNN models ResNet50 and DenseNet121 on CIFAR10 and MNIST datasets.
UR - http://www.scopus.com/inward/record.url?scp=85090807870&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85090807870&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85090807870
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 4943
EP - 4950
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -